Mechanistic constraints from the substrate concentration dependence of enzymatic fluctuations.
Ontology highlight
ABSTRACT: The time it takes an enzyme to complete its reaction is a stochastic quantity governed by thermal fluctuations. With the advent of high-resolution methods of single-molecule manipulation and detection, it is now possible to observe directly this natural variation in the enzymatic cycle completion time and extract kinetic information from the statistics of its fluctuations. To this end, the inverse of the squared coefficient of variation, which we term n(min), is a useful measure of fluctuations because it places a strict lower limit on the number of kinetic states in the enzymatic mechanism. Here we show that there is a single general expression for the substrate dependence of n(min) for a wide range of kinetic models. This expression is governed by three kinetic parameters, which we term N(L), N(S), and alpha. These parameters have simple geometric interpretations and provide clear constraints on possible kinetic mechanisms. As a demonstration of this analysis, we fit the fluctuations in the dwell times of the packaging motor of the bacteriophage varphi29, revealing additional features of the nucleotide loading process in this motor. Because a diverse set of kinetic models display the same substrate dependence for their fluctuations, the expression for this general dependence may prove of use in the characterization and study of the dynamics of a wide range of enzymes.
SUBMITTER: Moffitt JR
PROVIDER: S-EPMC2936640 | biostudies-literature | 2010 Sep
REPOSITORIES: biostudies-literature
ACCESS DATA