Phosphorylation of caldesmon at sites between residues 627 and 642 attenuates inhibitory activity and contributes to a reduction in Ca2+-calmodulin affinity.
Ontology highlight
ABSTRACT: Caldesmon is an actin- and myosin-binding protein found in smooth muscle that inhibits actin activation of myosin ATPase activity. The activity of caldesmon is controlled by phosphorylation and by binding to Ca(2+)-calmodulin. We investigated the effects of phosphorylation by p(21)-activated kinase 3 (PAK) and calmodulin on the 22 kDa C-terminal fragment of caldesmon (CaD22). We substituted the major PAK sites, Ser-672 and Ser-702, with either alanine or aspartic acid to mimic nonphosphorylated and constitutively phosphorylated states of caldesmon, respectively. The aspartic acid mutation of CaD22 weakened Ca(2+)-calmodulin binding but had no effect on inhibition of ATPase activity. Phosphorylation of the aspartic acid mutant with PAK resulted in the slow phosphorylation of Thr-627, Ser-631, Ser-635, and Ser-642. Phosphorylation at these sites weakened Ca(2+)-calmodulin binding further and reduced the inhibitory activity of CaD22 in the absence of Ca(2+)-calmodulin. Phosphorylation of these sites of the alanine mutant of CaD22 had no effect on Ca(2+)-calmodulin binding but did reduce inhibition of ATPase activity. Thus, the region between residues 627 and 642 may contribute to the overall regulation of caldesmon's activity.
SUBMITTER: Hamden SS
PROVIDER: S-EPMC2940999 | biostudies-literature | 2010 Sep
REPOSITORIES: biostudies-literature
ACCESS DATA