Unknown

Dataset Information

0

Dynamical principles of emotion-cognition interaction: mathematical images of mental disorders.


ABSTRACT: The key contribution of this work is to introduce a mathematical framework to understand self-organized dynamics in the brain that can explain certain aspects of itinerant behavior. Specifically, we introduce a model based upon the coupling of generalized Lotka-Volterra systems. This coupling is based upon competition for common resources. The system can be regarded as a normal or canonical form for any distributed system that shows self-organized dynamics that entail winnerless competition. Crucially, we will show that some of the fundamental instabilities that arise in these coupled systems are remarkably similar to endogenous activity seen in the brain (using EEG and fMRI). Furthermore, by changing a small subset of the system's parameters we can produce bifurcations and metastable sequential dynamics changing, which bear a remarkable similarity to pathological brain states seen in psychiatry. In what follows, we will consider the coupling of two macroscopic modes of brain activity, which, in a purely descriptive fashion, we will label as cognitive and emotional modes. Our aim is to examine the dynamical structures that emerge when coupling these two modes and relate them tentatively to brain activity in normal and non-normal states.

SUBMITTER: Rabinovich MI 

PROVIDER: S-EPMC2943469 | biostudies-literature | 2010 Sep

REPOSITORIES: biostudies-literature

altmetric image

Publications

Dynamical principles of emotion-cognition interaction: mathematical images of mental disorders.

Rabinovich Mikhail I MI   Muezzinoglu Mehmet K MK   Strigo Irina I   Bystritsky Alexander A  

PloS one 20100921 9


The key contribution of this work is to introduce a mathematical framework to understand self-organized dynamics in the brain that can explain certain aspects of itinerant behavior. Specifically, we introduce a model based upon the coupling of generalized Lotka-Volterra systems. This coupling is based upon competition for common resources. The system can be regarded as a normal or canonical form for any distributed system that shows self-organized dynamics that entail winnerless competition. Cru  ...[more]

Similar Datasets

| S-EPMC5576592 | biostudies-literature
| S-EPMC5585191 | biostudies-literature
| S-EPMC1420664 | biostudies-literature
| S-EPMC3800080 | biostudies-literature
| S-EPMC4793241 | biostudies-literature
| S-EPMC7511816 | biostudies-literature
2020-05-02 | GSE149733 | GEO
| S-EPMC3776194 | biostudies-other
| S-EPMC3513949 | biostudies-literature
2022-02-16 | PXD028841 | Pride