Design and synthesis of phospholipase C and A2-activatable near-infrared fluorescent smart probes.
Ontology highlight
ABSTRACT: The primary focus of this work was to develop activatable probes suitable for in vivo detection of phospholipase activity. Phospholipases (PLs) are ubiquitous enzymes that perform a number of critical regulatory functions. They catalyze phospholipid breakdown and are categorized as A(1), A(2) (PLA(2)), C (PLC), and D (PLD) based on their site of action. Here, we report the design, synthesis, and characterization of self-quenching reporter probes that release fluorescent moieties upon cleavage with PLA(2) or PLC. A series of phospholipids were synthesized bearing the NIR fluorophore pyropheophorbide a (Pyro) at the sn-2 position. Fluorescence quenching was achieved by attachment of either a positively charged black hole quencher-3 (BHQ-3) to the phospholipid headgroup or another neutral Pyro moiety at the sn-1 position. The specificity to different phospholipases was modulated by insertion of spacers (C(6), C(12)) between Pyro and the lipid backbone. The specificity of the quenched fluorescent phospholipids was assayed on a plate reader against a number of phospholipases and compared with two commercial probes bearing the visible fluorophore BODIPY. While PyroC(6)-PyroC(6)-PtdCho revealed significant background fluorescence, and a 10% fluorescence increase under the action of PLA(2), Pyro-PtdEtn-BHQ demonstrated high selective sensitivity to PLC, particularly to the PC-PLC isoform, and its sensitivity to PLA(2) was negligible due to steric hindrance at the sn-2 position. In contrast, the C(12)-spacered PyroC(12)-PtdEtn-BHQ demonstrated a remarkable selectivity for PLA(2) and the best relative PLA(2)/PLC sensitivity, significantly outperforming previously known probes. These results open an avenue for future in vivo experiments and for new probes to detect PL activity.
SUBMITTER: Popov AV
PROVIDER: S-EPMC2958237 | biostudies-literature | 2010 Oct
REPOSITORIES: biostudies-literature
ACCESS DATA