Unknown

Dataset Information

0

Appropriation of the MinD protein-interaction motif by the dimeric interface of the bacterial cell division regulator MinE.


ABSTRACT: MinE is required for the dynamic oscillation of Min proteins that restricts formation of the cytokinetic septum to the midpoint of the cell in gram negative bacteria. Critical for this oscillation is MinD-binding by MinE to stimulate MinD ATP hydrolysis, a function that had been assigned to the first ?30 residues in MinE. Previous models based on the structure of an autonomously folded dimeric C-terminal fragment suggested that the N-terminal domain is freely accessible for interactions with MinD. We report here the solution NMR structure of the full-length MinE dimer from Neisseria gonorrhoeae, with two parts of the N-terminal domain forming an integral part of the dimerization interface. Unexpectedly, solvent accessibility is highly restricted for residues that were previously hypothesized to directly interact with MinD. To delineate the true MinD-binding region, in vitro assays for MinE-stimulated MinD activity were performed. The relative MinD-binding affinities obtained for full-length and N-terminal peptides from MinE demonstrated that residues that are buried in the dimeric interface nonetheless participate in direct interactions with MinD. According to results from NMR spin relaxation experiments, access to these buried residues may be facilitated by the presence of conformational exchange. We suggest that this concealment of MinD-binding residues by the MinE dimeric interface provides a mechanism for prevention of nonspecific interactions, particularly with the lipid membrane, to allow the free diffusion of MinE that is critical for Min protein oscillation.

SUBMITTER: Ghasriani H 

PROVIDER: S-EPMC2973010 | biostudies-literature | 2010 Oct

REPOSITORIES: biostudies-literature

altmetric image

Publications

Appropriation of the MinD protein-interaction motif by the dimeric interface of the bacterial cell division regulator MinE.

Ghasriani Houman H   Ducat Thierry T   Hart Chris T CT   Hafizi Fatima F   Chang Nina N   Al-Baldawi Ali A   Ayed Saud H SH   Lundström Patrik P   Dillon Jo-Anne R JA   Goto Natalie K NK  

Proceedings of the National Academy of Sciences of the United States of America 20101011 43


MinE is required for the dynamic oscillation of Min proteins that restricts formation of the cytokinetic septum to the midpoint of the cell in gram negative bacteria. Critical for this oscillation is MinD-binding by MinE to stimulate MinD ATP hydrolysis, a function that had been assigned to the first ∼30 residues in MinE. Previous models based on the structure of an autonomously folded dimeric C-terminal fragment suggested that the N-terminal domain is freely accessible for interactions with Min  ...[more]

Similar Datasets

| S-EPMC10031476 | biostudies-literature
| S-EPMC5733608 | biostudies-literature
| S-EPMC6925984 | biostudies-literature
| S-EPMC5530704 | biostudies-literature
| S-EPMC3493925 | biostudies-literature
| S-EPMC3870257 | biostudies-literature
| S-EPMC23996 | biostudies-literature
| S-EPMC3073286 | biostudies-literature
| S-EPMC4418908 | biostudies-literature
| S-EPMC7993993 | biostudies-literature