Unknown

Dataset Information

0

Kaempferol inhibits UVB-induced COX-2 expression by suppressing Src kinase activity.


ABSTRACT: Ultraviolet (UV) radiation is the primary environmental risk factor in the development of nonmelanoma skin cancer, and UVB in particular promotes tumor growth through various signaling pathways. Kaempferol, a flavonoid with anti-inflammatory and anti-oxidative properties, has been studied as a chemopreventive agent; however, little is known regarding its effects on UVB-induced photo-carcinogenesis. Here, we examined the effect of kaempferol on UVB-induced skin inflammation. We found that kaempferol suppressed UVB-induced cyclooxygenase-2 (COX-2) protein expression in mouse skin epidermal JB6 P+ cells and attenuated the UVB-induced transcriptional activities of cox-2 and activator protein-1 (AP-1). Kaempferol attenuated the UVB-induced phosphorylation of several mitogen-activated protein kinases (MAPKs), including ERKs, p38, and JNKs, but had no effect on the phosphorylation of the upstream MAPK regulator Src. However, in vitro and ex vivo kinase assays demonstrated that kaempferol suppressed Src kinase activity. Furthermore, in vivo data from mouse skin support the idea that kaempferol suppresses UVB-induced COX-2 expression by blocking Src kinase activity. A pull-down assay revealed that kaempferol competes with ATP for direct binding to Src. Docking data suggest that kaempferol docks easily into the ATP-binding site of Src, which is located between the N and the C lobes of the kinase domain. Taken together, these results suggest that kaempferol is a potent chemopreventive agent against skin cancer through its inhibitory interaction with Src.

SUBMITTER: Lee KM 

PROVIDER: S-EPMC2974004 | biostudies-literature | 2010 Dec

REPOSITORIES: biostudies-literature

altmetric image

Publications

Kaempferol inhibits UVB-induced COX-2 expression by suppressing Src kinase activity.

Lee Kyung Mi KM   Lee Ki Won KW   Jung Sung Keun SK   Lee Eun Jung EJ   Heo Yong-Seok YS   Bode Ann M AM   Lubet Ronald A RA   Lee Hyong Joo HJ   Dong Zigang Z  

Biochemical pharmacology 20100701 12


Ultraviolet (UV) radiation is the primary environmental risk factor in the development of nonmelanoma skin cancer, and UVB in particular promotes tumor growth through various signaling pathways. Kaempferol, a flavonoid with anti-inflammatory and anti-oxidative properties, has been studied as a chemopreventive agent; however, little is known regarding its effects on UVB-induced photo-carcinogenesis. Here, we examined the effect of kaempferol on UVB-induced skin inflammation. We found that kaempfe  ...[more]

Similar Datasets

| S-EPMC444846 | biostudies-literature
| S-EPMC7087487 | biostudies-literature
| S-EPMC8448825 | biostudies-literature
| S-EPMC8466288 | biostudies-literature
| S-EPMC1988937 | biostudies-literature
| S-EPMC5732839 | biostudies-literature
| S-EPMC4043244 | biostudies-literature
| S-EPMC3225387 | biostudies-literature
| S-EPMC3341159 | biostudies-literature
| S-EPMC3920272 | biostudies-literature