Unknown

Dataset Information

0

Heterogeneous response to a quorum-sensing signal in the luminescence of individual Vibrio fischeri.


ABSTRACT: The marine bacterium Vibrio fischeri regulates its bioluminescence through a quorum sensing mechanism: the bacterium releases diffusible small molecules (autoinducers) that accumulate in the environment as the population density increases. This accumulation of autoinducer (AI) eventually activates transcriptional regulators for bioluminescence as well as host colonization behaviors. Although V. fischeri quorum sensing has been extensively characterized in bulk populations, far less is known about how it performs at the level of the individual cell, where biochemical noise is likely to limit the precision of luminescence regulation. We have measured the time-dependence and AI-dependence of light production by individual V. fischeri cells that are immobilized in a perfusion chamber and supplied with a defined concentration of exogenous AI. We use low-light level microscopy to record and quantify the photon emission from the cells over periods of several hours as they respond to the introduction of AI. We observe an extremely heterogeneous response to the AI signal. Individual cells differ widely in the onset time for their luminescence and in their resulting brightness, even in the presence of high AI concentrations that saturate the light output from a bulk population. The observed heterogeneity shows that although a given concentration of quorum signal may determine the average light output from a population of cells, it provides far weaker control over the luminescence output of each individual cell.

SUBMITTER: Perez PD 

PROVIDER: S-EPMC2982848 | biostudies-literature | 2010

REPOSITORIES: biostudies-literature

altmetric image

Publications

Heterogeneous response to a quorum-sensing signal in the luminescence of individual Vibrio fischeri.

Pérez Pablo Delfino PD   Hagen Stephen J SJ  

PloS one 20101116 11


The marine bacterium Vibrio fischeri regulates its bioluminescence through a quorum sensing mechanism: the bacterium releases diffusible small molecules (autoinducers) that accumulate in the environment as the population density increases. This accumulation of autoinducer (AI) eventually activates transcriptional regulators for bioluminescence as well as host colonization behaviors. Although V. fischeri quorum sensing has been extensively characterized in bulk populations, far less is known abou  ...[more]

Similar Datasets

| S-EPMC2519518 | biostudies-literature
| S-EPMC3566283 | biostudies-literature
| S-EPMC3688970 | biostudies-literature
| S-EPMC2635011 | biostudies-literature
| S-EPMC8273514 | biostudies-literature
| S-EPMC383144 | biostudies-literature
| S-EPMC3285556 | biostudies-literature
| S-EPMC101990 | biostudies-literature
| S-EPMC5019203 | biostudies-literature
| S-EPMC4288691 | biostudies-literature