Newer insights into premeiotic development of germ cells in adult human testis using Oct-4 as a stem cell marker.
Ontology highlight
ABSTRACT: The transcription factor octamer-binding transforming factor 4 (Oct-4) is central to the gene regulatory network responsible for self-renewal, pluripotency, and lineage commitment in embryonic stem (ES) cells and induced pluripotent stem cells (PSCs). This study was undertaken to evaluate differential localization and expression of two major transcripts of Oct-4, viz. Oct-4A and Oct-4B, in adult human testis. A novel population of 5- to 10-?m PSCs with nuclear Oct-4A was identified by ISH and immunolocalization studies. Besides Oct-4, other pluripotent markers like Nanog and TERT were also detected by RT-PCR. A(dark) spermatogonial stem cells (SSCs) were visualized in pairs and chains undergoing clonal expansion and stained positive for cytoplasmic Oct-4B. Quantitative PCR and Western blotting revealed both the transcripts, with higher expression of Oct-4B. It is proposed that PSCs undergo asymmetric cell division and give rise to A(dark) SSCs, which proliferate and initiate lineage-specific differentiation. The darkly stained nuclei in A(dark) SSCs may represent extensive nuclear reprogramming by epigenetic changes when a PSC becomes committed. Oct-4B eventually disappeared in mature germ cells, viz. spermatocytes, spermatids, and sperm. Besides maintaining normal testicular homeostasis, PSCs may also be implicated in germ cell tumors and ES-like colonies that have recently been derived from adult human testicular tissue.
SUBMITTER: Bhartiya D
PROVIDER: S-EPMC2989246 | biostudies-literature | 2010 Dec
REPOSITORIES: biostudies-literature
ACCESS DATA