Unknown

Dataset Information

0

Prediction model for knee osteoarthritis based on genetic and clinical information.


ABSTRACT: INTRODUCTION: Osteoarthritis (OA) is the most common bone and joint disease influenced by genetic and environmental factors. Recent association studies have uncovered the genetic factors behind OA, its susceptibility genes, which would enable us to predict disease occurrence based on genotype information. However, most previous studies have evaluated the effects of only a single susceptibility gene, and hence prediction based on such information is not as reliable. Here, we constructed OA-prediction models based on genotype information from a case-control association study and tested their predictability. METHODS: We genotyped risk alleles of the three susceptibility genes, asporin (ASPN), growth differentiation factor 5 (GDF5), and double von Willebrand factor A domains (DVWA) for a total of 2,158 Japanese subjects (933 OA and 1,225 controls) and statistically analyzed their effects. After that, we constructed prediction models by using the logistic regression analysis. RESULTS: When the effects of each allele were assumed to be the same and multiplicative, each additional risk allele increased the odds ratio (OR) by a factor of 1.23 (95% confidence interval (CI), 1.12 to 1.34). Individuals with five or six risk alleles showed significantly higher susceptibility when compared with those with zero or one, with an OR of 2.67 (95% CI, 1.46 to 4.87; P = 0.0020). Statistical evaluation of the prediction power of models showed that a model using only genotyping data had poor predictability. We obtained a model with good predictability by incorporating clinical data, which was further improved by rigorous age adjustment. CONCLUSIONS: Our results showed that consideration of adjusted clinical information, as well as increases in the number of risk alleles to be integrated, is critical for OA prediction by using data from case-control studies. To the authors' knowledge, this is the first report of the OA-prediction model combining both genetic and clinical information.

SUBMITTER: Takahashi H 

PROVIDER: S-EPMC2991022 | biostudies-literature | 2010

REPOSITORIES: biostudies-literature

altmetric image

Publications

Prediction model for knee osteoarthritis based on genetic and clinical information.

Takahashi Hiroshi H   Nakajima Masahiro M   Ozaki Kouichi K   Tanaka Toshihiro T   Kamatani Naoyuki N   Ikegawa Shiro S  

Arthritis research & therapy 20101012 5


<h4>Introduction</h4>Osteoarthritis (OA) is the most common bone and joint disease influenced by genetic and environmental factors. Recent association studies have uncovered the genetic factors behind OA, its susceptibility genes, which would enable us to predict disease occurrence based on genotype information. However, most previous studies have evaluated the effects of only a single susceptibility gene, and hence prediction based on such information is not as reliable. Here, we constructed OA  ...[more]

Similar Datasets

| S-EPMC6934728 | biostudies-literature
| S-EPMC4060235 | biostudies-literature
| S-EPMC10258963 | biostudies-literature
| S-EPMC9816749 | biostudies-literature
2009-04-23 | E-GEOD-8077 | biostudies-arrayexpress
| S-EPMC7519044 | biostudies-literature
| S-EPMC6470320 | biostudies-literature
| PRJNA289575 | ENA
2012-11-15 | E-GEOD-42295 | biostudies-arrayexpress
2012-11-15 | GSE42295 | GEO