DNA Encapsulation of Ten Silver Atoms Produces a Bright, Modulatable, Near Infrared-Emitting Cluster.
Ontology highlight
ABSTRACT: Photostability, inherent fluorescence brightness, and optical modulation of fluorescence are key attributes distinguishing silver nanoclusters as fluorophores. DNA plays a central role both by protecting the clusters in aqueous environments and by directing their formation. Herein, we characterize a new near infrared-emitting cluster with excitation and emission maxima at 750 and 810 nm, respectively that is stabilized within C(3)AC(3)AC(3)TC(3)A. Following chromatographic resolution of the near infrared species, a stoichiometry of 10 Ag/oligonucleotide was determined. Combined with excellent photostability, the cluster's 30% fluorescence quantum yield and 180,000 M(-1)cm(-1) extinction coefficient give it a fluorescence brightness that significantly improves on that of the organic dye Cy7. Fluorescence correlation analysis shows an optically accessible dark state that can be directly depopulated with longer wavelength co-illumination. The coupled increase in total fluorescence demonstrates that enhanced sensitivity can be realized through Synchronously Amplified Fluorescence Image Recovery (SAFIRe), which further differentiates this new fluorophore.
SUBMITTER: Petty JT
PROVIDER: S-EPMC2992357 | biostudies-literature | 2010 Sep
REPOSITORIES: biostudies-literature
ACCESS DATA