Project description:Rift Valley fever virus (RVFV) is an encephalitic bunyavirus that can infect neurons in the brain. There are no approved therapeutics that can protect from RVFV encephalitis. Innate immunity, the first line of defense against infection, canonically antagonizes viruses through interferon signaling. We found that interferons did not efficiently protect primary cortical neurons from RVFV, unlike other cell types. To identify alternative neuronal antiviral pathways, we screened innate immune ligands and discovered that the TLR2 ligand Pam3CSK4 inhibited RVFV infection, and other bunyaviruses. Mechanistically, we found that Pam3CSK4 blocks viral fusion, independent of TLR2. In a mouse model of RVFV encephalitis, Pam3CSK4 treatment protected animals from infection and mortality. Overall, Pam3CSK4 is a bunyavirus fusion inhibitor active in primary neurons and the brain, representing a new approach toward the development of treatments for encephalitic bunyavirus infections.
Project description:Rift Valley fever virus is an arbovirus found in Africa and the Middle East. Most infected individuals experience a mild self-limiting illness; however, some develop severe disease including hepatitis, hemorrhagic fever, or encephalitis. The biological reasons for these marked differences in disease manifestation are unknown. In this study, we evaluate 32 biomarkers in serum of 26 patients from an outbreak that occurred in Saudi Arabia in 2000-2001. Eleven biomarkers correlated with viral RNA. Thirteen biomarkers were associated with a fatal outcome. No associations of biomarkers and hemorrhage or central nervous system disease were identified in this cohort.
Project description:Rift Valley fever virus (RVFV) causes Rift Valley fever (RVF), resulting in morbidity and mortality in humans and ruminants. Evidence of transboundary outbreaks means that RVFV remains a threat to human health and livestock industries in countries that are free from the disease. To enhance surveillance capability, methods for detection of RVFV are required. The generation of reagents suitable for the detection of RVFV antigen in formalin-fixed, paraffin-embedded tissues from infected animals have been developed and are described herein. Recombinant nucleoprotein (rNP) was expressed in Escherichia coli and purified using immobilized metal ion affinity chromatography. Purified rNP was used as an immunogen to produce anti-NP polyclonal antisera in rabbits for use in detection of RVFV NP in experimentally infected animals by immunohistochemistry. Antisera raised in rabbits against rNP were able to recognize viral NP antigen in fixed infected Vero cell pellets and sheep liver. Therefore, the methods and reagents described herein are useful in assays for detection of RVFV infections in animals, for research and surveillance purposes.
Project description:Rift Valley fever virus (RVFV) is a mosquito-borne zoonotic pathogen causing disease outbreaks in Africa and the Arabian Peninsula. The virus has great potential for transboundary spread due to the presence of competent vectors in non-endemic areas. There is currently no fully licensed vaccine suitable for use in livestock or humans outside endemic areas. Here we report the evaluation of the efficacy of a recombinant subunit vaccine based on the RVFV Gn and Gc glycoproteins. In a previous study, the vaccine elicited strong virus neutralizing antibody responses in sheep and was DIVA (differentiating naturally infected from vaccinated animals) compatible. In the current efficacy study, a group of sheep (n = 5) was vaccinated subcutaneously with the glycoprotein-based subunit vaccine candidate and then subjected to heterologous challenge with the virulent Kenya-128B-15 RVFV strain. The vaccine elicited high virus neutralizing antibody titers and conferred complete protection in all vaccinated sheep, as evidenced by prevention of viremia, fever and absence of RVFV-associated histopathological lesions. We conclude that the subunit vaccine platform represents a promising strategy for the prevention and control of RVFV infections in susceptible hosts.
Project description:The Rift Valley Fever (RVF) is an arthropod-borne disease present in several countries of Africa and Middle East. It is caused by RVF virus which can infect both humans and animals. In humans, it leads to various manifestations including hepatitis, encephalitis and death, while in domestic animals it usually causes miscarriage in pregnant females and it is often fatal for the newborn. Not all people or animal infected by the virus present the same disease. Some patients exhibit unapparent or moderate febrile reactions, while others develop severe symptoms. This observation suggests that host genetic factors play a role in controlling the outcome of infection. In this work, we compare the response of two different inbred strains of mice, MBT/Pas and BALB/cByJ, to infection with RVF virus. These strains exhibit different profiles of susceptibility to RVF virus infection. Indeed, MBT/Pas mice rapidly develop high viraemia and die soon after infection, while BALB/cByJ mice have a lower viraemia and die later. Interestingly, mouse embryonic fibroblasts (MEFs) obtained from MBT/Pas foetuses allows higher viral production than BALB/cByJ MEFs. Keywords: expression profiling The experiment was designed to include ARN samples from MBT/Pas and BALB/cByJ MEFs infected with the Rift Valley Fever (RVF) virus, and their respective mock-infected controls; each one of those in triplicate. Therefore, we have used 12 different samples for the study, divided as follows: 3 samples of RVF virus-infected BALB/cByJ MEFs, 3 samples of mock-infected BALB/cByJ MEFs, 3 samples of RVF virus-infected MBT/Pas MEFs and 3 samples of mock-infected MBT/Pas MEFs. Each RNA was extracted from a different culture well.
Project description:Phylogenetic relationships were examined for 198 Rift Valley fever virus isolates and 5 derived strains obtained from various sources in Saudi Arabia and 16 countries in Africa during a 67-year period (1944-2010). A maximum-likelihood tree prepared with sequence data for a 490-nt section of the Gn glycoprotein gene showed that 95 unique sequences sorted into 15 lineages. A 2010 isolate from a patient in South Africa potentially exposed to co-infection with live animal vaccine and wild virus was a reassortant. The potential influence of large-scale use of live animal vaccine on evolution of Rift Valley fever virus is discussed.
Project description:Innovative tools are needed to alleviate the burden of mosquito-borne diseases, and strategies that target the pathogen are being considered. A possible tactic is the use of Wolbachia, a maternally inherited, endosymbiotic bacterium that can (but does not always) suppress diverse pathogens when introduced to naive mosquito species. We investigated effects of somatic Wolbachia (strain wAlbB) infection on Rift Valley fever virus (RVFV) in Culex tarsalis mosquitoes. When compared to Wolbachia-uninfected mosquitoes, there was no significant effect of Wolbachia infection on RVFV infection, dissemination, or transmission frequencies, nor on viral body or saliva titers. Within Wolbachia-infected mosquitoes, there was a modest negative correlation between RVFV body titers and Wolbachia density, suggesting that Wolbachia may slightly suppress RVFV in a density-dependent manner in this mosquito species. These results are contrary to previous work in the same mosquito species, showing Wolbachia-induced enhancement of West Nile virus infection rates. Taken together, these results highlight the importance of exploring the breadth of pathogen modulations induced by Wolbachia.