Selection and separation of viable cells based on a cell-lethal assay.
Ontology highlight
ABSTRACT: A method to select and separate viable cells based on the results of a cell-lethal assay was developed. Cells were plated on an array of culture sites with each site composed of closely spaced, releasable micropallets. Clonal colonies spanning multiple micropallets on individual culture sites were established within 72 h of plating. Adjacent sites were widely spaced with 100% of the colonies remaining sequestered on a single culture site during expansion. A laser-based method mechanically released a micropallet underlying a colony to segment the colony into two genetically identical colonies. One portion of the segmented colony was collected with 90% efficiency while viability of both fractions was 100%. The segmented colonies released from the array were fixed and subjected to immunofluorescence staining of intracellular phospho-ERK kinase to identify colonies that were highly resistant or sensitive to phorbol ester-induced activation of ERK. These resistant and sensitive cells were then matched to the corresponding viable colonies on the array. Sensitive and resistant colonies on the array were released and cultured. When these cultured cells were reanalyzed for phorbol ester-induced ERK activity, the cells retained the sensitive or resistant phenotype of the originally screened subcolony. Thus, cells were separated and collected based using the result of a cell-lethal assay as selection criteria. These microarrays enabling clonal colony segmentation permitted sampling and manipulation of the colonies at very early times and at small cell numbers to reduce reagent, time, and manpower requirements.
SUBMITTER: Xu W
PROVIDER: S-EPMC3012145 | biostudies-literature | 2011 Jan
REPOSITORIES: biostudies-literature
ACCESS DATA