Characterisation and deposition studies of recrystallised lactose from binary mixtures of ethanol/butanol for improved drug delivery from dry powder inhalers.
Ontology highlight
ABSTRACT: Dry powder inhaler formulations comprising commercial lactose-drug blends can show restricted detachment of drug from lactose during aerosolisation, which can lead to poor fine particle fractions (FPFs) which are suboptimal. The aim of the present study was to investigate whether the crystallisation of lactose from different ethanol/butanol co-solvent mixtures could be employed as a method of altering the FPF of salbutamol sulphate from powder blends. Lactose particles were prepared by an anti-solvent recrystallisation process using various ratios of the two solvents. Crystallised lactose or commercial lactose was mixed with salbutamol sulphate and in vitro deposition studies were performed using a multistage liquid impinger. Solid-state characterisation results showed that commercial lactose was primarily composed of the α-anomer whilst the crystallised lactose samples comprised a α/β mixture containing a lower number of moles of water per mole of lactose compared to the commercial lactose. The crystallised lactose particles were also less elongated and more irregular in shape with rougher surfaces. Formulation blends containing crystallised lactose showed better aerosolisation performance and dose uniformity when compared to commercial lactose. The highest FPF of salbutamol sulphate (38.0 ± 2.5%) was obtained for the lactose samples that were crystallised from a mixture of ethanol/butanol (20:60) compared to a FPF of 19.7 ± 1.9% obtained for commercial lactose. Engineered lactose carriers with modified anomer content and physicochemical properties, when compared to the commercial grade, produced formulations which generated a high FPF.
SUBMITTER: Kaialy W
PROVIDER: S-EPMC3032097 | biostudies-literature |
REPOSITORIES: biostudies-literature
ACCESS DATA