Understanding the effects of carbocyclic sugars constrained to north and south conformations on RNA nanodesign.
Ontology highlight
ABSTRACT: Relatively new types of the modified nucleotides, namely carbocyclic sugars that are constrained to north or south (C2' or C3' exo) conformations, can be used for RNA nanoparticle design to control their structures and stability by rigidifying nucleotides and altering the helical properties of RNA duplexes. Two RNA structures, an RNA dodecamer and an HIV kissing loop complex where several nucleotides were replaced with north or south constrained sugars, were studied by molecular dynamics (MD) simulations. The substituted south constrained nucleotides in the dodecamer widened the major groove and narrowed and deepened the minor groove thus inducing local conformational changes that resemble a B-form DNA helix. In the HIV kissing loop complex, north and south constrained nucleotides were substituted into flanking bases and stems. The modified HIV kissing loop complex showed a lower RMSD value than the normal kissing loop complex. The overall twist angle was also changed and its standard deviation was reduced. In addition, the modified RNA dodecamer and HIV kissing loop complex were characterized by principal component analysis (PCA) and steered molecular dynamics (SMD). PCA results showed that the constrained sugars stabilized the overall motions. The results of the SMD simulations indicated that as the backbone ? angles were increased by elongation, more force was applied to the modified RNA due to the constrained sugar analogues.
SUBMITTER: Kim T
PROVIDER: S-EPMC3040123 | biostudies-literature | 2011 Feb
REPOSITORIES: biostudies-literature
ACCESS DATA