Unknown

Dataset Information

0

Glutamate receptor subtypes mediating synaptic activation of prefrontal cortex neurons: relevance for schizophrenia.


ABSTRACT: Schizophrenia may involve hypofunction of NMDA receptor (NMDAR)-mediated signaling, and alterations in parvalbumin-positive fast-spiking (FS) GABA neurons that may cause abnormal gamma oscillations. It was recently hypothesized that prefrontal cortex (PFC) FS neuron activity is highly dependent on NMDAR activation and that, consequently, FS neuron dysfunction in schizophrenia is secondary to NMDAR hypofunction. However, NMDARs are abundant in synapses onto PFC pyramidal neurons; thus, a key question is whether FS neuron or pyramidal cell activation is more dependent on NMDARs. We examined the AMPAR and NMDAR contribution to synaptic activation of FS neurons and pyramidal cells in the PFC of adult mice. In FS neurons, EPSCs had fast decay and weak NMDAR contribution, whereas in pyramidal cells, EPSCs were significantly prolonged by NMDAR-mediated currents. Moreover, the AMPAR/NMDAR EPSC ratio was higher in FS cells. NMDAR antagonists decreased EPSPs and EPSP-spike coupling more strongly in pyramidal cells than in FS neurons, showing that FS neuron activation is less NMDAR dependent than pyramidal cell excitation. The precise EPSP-spike coupling produced by fast-decaying EPSCs in FS cells may be important for network mechanisms of gamma oscillations based on feedback inhibition. To test this possibility, we used simulations in a computational network of reciprocally connected FS neurons and pyramidal cells and found that brief AMPAR-mediated FS neuron activation is crucial to synchronize, via feedback inhibition, pyramidal cells in the gamma frequency band. Our results raise interesting questions about the mechanisms that might link NMDAR hypofunction to alterations of FS neurons in schizophrenia.

SUBMITTER: Rotaru DC 

PROVIDER: S-EPMC3041270 | biostudies-literature | 2011 Jan

REPOSITORIES: biostudies-literature

altmetric image

Publications

Glutamate receptor subtypes mediating synaptic activation of prefrontal cortex neurons: relevance for schizophrenia.

Rotaru Diana C DC   Yoshino Hiroki H   Lewis David A DA   Ermentrout G Bard GB   Gonzalez-Burgos Guillermo G  

The Journal of neuroscience : the official journal of the Society for Neuroscience 20110101 1


Schizophrenia may involve hypofunction of NMDA receptor (NMDAR)-mediated signaling, and alterations in parvalbumin-positive fast-spiking (FS) GABA neurons that may cause abnormal gamma oscillations. It was recently hypothesized that prefrontal cortex (PFC) FS neuron activity is highly dependent on NMDAR activation and that, consequently, FS neuron dysfunction in schizophrenia is secondary to NMDAR hypofunction. However, NMDARs are abundant in synapses onto PFC pyramidal neurons; thus, a key ques  ...[more]

Similar Datasets

2021-09-07 | PXD027050 | Pride
| S-EPMC4509630 | biostudies-literature
| S-EPMC2784456 | biostudies-literature
| S-EPMC5704077 | biostudies-literature
| S-EPMC10076656 | biostudies-literature
2023-05-10 | PXD024939 | Pride
| S-EPMC3380098 | biostudies-literature
| S-EPMC2656372 | biostudies-literature
| S-EPMC2749493 | biostudies-literature
| S-EPMC6787489 | biostudies-literature