Microarray oligonucleotide probe designer (MOPeD): A web service.
Ontology highlight
ABSTRACT: Methods of genomic selection that combine high-density oligonucleotide microarrays with next-generation DNA sequencing allow investigators to characterize genomic variation in selected portions of complex eukaryotic genomes. Yet choosing which specific oligonucleotides to be use can pose a major technical challenge. To address this issue, we have developed a software package called MOPeD (Microarray Oligonucleotide Probe Designer), which automates the process of designing genomic selection microarrays. This web-based software allows individual investigators to design custom genomic selection microarrays optimized for synthesis with Roche NimbleGen's maskless photolithography. Design parameters include uniqueness of the probe sequences, melting temperature, hairpin formation, and the presence of single nucleotide polymorphisms. We generated probe databases for the human, mouse, and rhesus macaque genomes and conducted experimental validation of MOPeD-designed microarrays in human samples by sequencing the human X chromosome exome, where relevant sequence metrics indicated superior performance relative to a microarray designed by the Roche NimbleGen proprietary algorithm. We also performed validation in the mouse to identify known mutations contained within a 487-kb region from mouse chromosome 16, the mouse chromosome 16 exome (1.7 Mb), and the mouse chromosome 12 exome (3.3 Mb). Our results suggest that the open source MOPeD software package and website (http://moped.genetics.emory.edu/) will make a valuable resource for investigators in their sequence-based studies of complex eukaryotic genomes.
SUBMITTER: Patel VC
PROVIDER: S-EPMC3048354 | biostudies-literature | 2010 Nov
REPOSITORIES: biostudies-literature
ACCESS DATA