Chemotherapy-resistant osteosarcoma is highly susceptible to IL-15-activated allogeneic and autologous NK cells.
Ontology highlight
ABSTRACT: High-grade osteosarcoma occurs predominantly in adolescents and young adults and has an overall survival rate of about 60%, despite chemotherapy and surgery. Therefore, novel treatment modalities are needed to prevent or treat recurrent disease. Natural killer (NK) cells are lymphocytes with cytotoxic activity toward virus-infected or malignant cells. We explored the feasibility of autologous and allogeneic NK cell-mediated therapies for chemotherapy-resistant and chemotherapy-sensitive high-grade osteosarcoma. The expression by osteosarcoma cells of ligands for activating NK cell receptors was studied in vitro and in vivo, and their contribution to NK cell-mediated cytolysis was studied by specific antibody blockade. Chromium release cytotoxicity assays revealed chemotherapy-sensitive and chemotherapy-resistant osteosarcoma cell lines and osteosarcoma primary cultures to be sensitive to NK cell-mediated cytolysis. Cytolytic activity was strongly enhanced by IL-15 activation and was dependent on DNAM-1 and NKG2D pathways. Autologous and allogeneic activated NK cells lysed osteosarcoma primary cultures equally well. Osteosarcoma patient-derived NK cells were functionally and phenotypically unimpaired. In conclusion, osteosarcoma cells, including chemoresistant variants, are highly susceptible to lysis by IL-15-induced NK cells from both allogeneic and autologous origin. Our data support the exploitation of NK cells or NK cell-activating agents in patients with high-grade osteosarcoma.
SUBMITTER: Buddingh EP
PROVIDER: S-EPMC3061210 | biostudies-literature | 2011 Apr
REPOSITORIES: biostudies-literature
ACCESS DATA