Unknown

Dataset Information

0

Organization of inorganic nanomaterials via programmable DNA self-assembly and peptide molecular recognition.


ABSTRACT: An interesting alternative to top-down nanofabrication is to imitate biology, where nanoscale materials frequently integrate organic molecules for self-assembly and molecular recognition with ordered, inorganic minerals to achieve mechanical, sensory, or other advantageous functions. Using biological systems as inspiration, researchers have sought to mimic the nanoscale composite materials produced in nature. Here, we describe a combination of self-assembly, molecular recognition, and templating, relying on an oligonucleotide covalently conjugated to a high-affinity gold-binding peptide. After integration of the peptide-coupled DNA into a self-assembling superstructure, the templated peptides recognize and bind gold nanoparticles. In addition to providing new ways of building functional multinanoparticle systems, this work provides experimental proof that a single peptide molecule is sufficient for immobilization of a nanoparticle. This molecular construction strategy, combining DNA assembly and peptide recognition, can be thought of as programmable, granular, artificial biomineralization. We also describe the important observation that the addition of 1-2% Tween 20 surfactant to the solution during gold particle binding allows the gold nanoparticles to remain soluble within the magnesium-containing DNA assembly buffer under conditions that usually lead to the aggregation and precipitation of the nanoparticles.

SUBMITTER: Carter JD 

PROVIDER: S-EPMC3062703 | biostudies-literature | 2011 Mar

REPOSITORIES: biostudies-literature

altmetric image

Publications

Organization of inorganic nanomaterials via programmable DNA self-assembly and peptide molecular recognition.

Carter Joshua D JD   LaBean Thomas H TH  

ACS nano 20110211 3


An interesting alternative to top-down nanofabrication is to imitate biology, where nanoscale materials frequently integrate organic molecules for self-assembly and molecular recognition with ordered, inorganic minerals to achieve mechanical, sensory, or other advantageous functions. Using biological systems as inspiration, researchers have sought to mimic the nanoscale composite materials produced in nature. Here, we describe a combination of self-assembly, molecular recognition, and templating  ...[more]

Similar Datasets

| S-EPMC8664541 | biostudies-literature
| S-EPMC2705589 | biostudies-literature
| S-EPMC8343431 | biostudies-literature
| S-EPMC7154728 | biostudies-literature
| S-EPMC5553714 | biostudies-literature
| S-EPMC6546686 | biostudies-literature
| S-EPMC4785676 | biostudies-literature
| S-EPMC5851444 | biostudies-literature
| S-EPMC6050331 | biostudies-literature
| S-EPMC2547997 | biostudies-literature