Unknown

Dataset Information

0

The zebrafish embryo as a dynamic model of anoxia tolerance.


ABSTRACT: Developing organisms depend upon a delicate balance in the supply and demand of energy to adapt to variable oxygen availability, although the essential mechanisms determining such adaptation remain elusive. In this study, we examine reversible anoxic arrest and dynamic bioenergetic transitions during zebrafish development. Our data reveal that the duration of anoxic viability corresponds to the developmental stage and anaerobic metabolic rate. Diverse chemical inhibitors of mitochondrial oxidative phosphorylation induce a similar arrest in normoxic embryos, suggesting a pathway responsive to perturbations in aerobic energy production rather than molecular oxygen. Consistent with this concept, arrest is accompanied by rapid activation of the energy-sensing AMP-activated protein kinase pathway, demonstrating a potential link between the sensing of energy status and adaptation to oxygen availability. These observations permit mechanistic insight into energy homeostasis during development that now enable genetic and small molecule screens in this vertebrate model of anoxia tolerance.

SUBMITTER: Mendelsohn BA 

PROVIDER: S-EPMC3081722 | biostudies-literature | 2008 Jul

REPOSITORIES: biostudies-literature

altmetric image

Publications

The zebrafish embryo as a dynamic model of anoxia tolerance.

Mendelsohn Bryce A BA   Kassebaum Bethany L BL   Gitlin Jonathan D JD  

Developmental dynamics : an official publication of the American Association of Anatomists 20080701 7


Developing organisms depend upon a delicate balance in the supply and demand of energy to adapt to variable oxygen availability, although the essential mechanisms determining such adaptation remain elusive. In this study, we examine reversible anoxic arrest and dynamic bioenergetic transitions during zebrafish development. Our data reveal that the duration of anoxic viability corresponds to the developmental stage and anaerobic metabolic rate. Diverse chemical inhibitors of mitochondrial oxidati  ...[more]

Similar Datasets

| S-EPMC2858231 | biostudies-literature
| S-EPMC4172388 | biostudies-literature
| S-EPMC5501200 | biostudies-literature
| S-EPMC1418923 | biostudies-literature
| S-EPMC5992526 | biostudies-literature
| S-EPMC6048248 | biostudies-literature
| S-EPMC8535780 | biostudies-literature
| S-EPMC6723132 | biostudies-literature
| S-EPMC5078090 | biostudies-literature
| S-EPMC6207680 | biostudies-literature