Ontology highlight
ABSTRACT: Unlabelled
The alpha subunit of Mycobacterial DNA polymerase III holo enzyme catalyzes the polymerization of both DNA strands. The present investigation reports three dimensional (3-D) structure model of DNA polymerase III α subunit of Mycobacterium tuberculosis H37Rv (MtbDnaE1) generated using homology modeling with the backbone structure of DNA polymerase III α of Thermus aquaticus as a template. The model was evaluated at various structure verification servers, which assess the stereo chemical parameters of the residues in the model, as well as structural and functional domains. Comparative analysis of MtbDnaE1 structure reveals the structure of its catalytic domain to be unrelated to that of the human. Successful docking of known inhibitor of bacterial DNA polymerases, 251D onto the modeled MtbDnaE1 was also performed. Therefore, the structure model of MtbDnaE1, a potential anti-mycobacterial target, opens a new avenue for structure-based drug designing against the pathogen.Abbreviations
aa - amino acid(s), PolIIIα - DNA polymerase III alpha subunit, Taq Pol IIIα - Pol IIIα of Thermus aquaticus, MtbDnaE1 - PolIIIα of Mycobacterium tuberculosis.
SUBMITTER: Chhabra G
PROVIDER: S-EPMC3082860 | biostudies-literature | 2011 Mar
REPOSITORIES: biostudies-literature
Chhabra Gagan G Dixit Aparna A C Garg Lalit L
Bioinformation 20110326 2
<h4>Unlabelled</h4>The alpha subunit of Mycobacterial DNA polymerase III holo enzyme catalyzes the polymerization of both DNA strands. The present investigation reports three dimensional (3-D) structure model of DNA polymerase III α subunit of Mycobacterium tuberculosis H37Rv (MtbDnaE1) generated using homology modeling with the backbone structure of DNA polymerase III α of Thermus aquaticus as a template. The model was evaluated at various structure verification servers, which assess the stereo ...[more]