Unknown

Dataset Information

0

In silico screening for novel inhibitors of DNA polymerase III alpha subunit of Mycobacterium tuberculosis (MtbDnaE2, H37Rv).


ABSTRACT: Tuberculosis, a pandemic disease is caused by Mycobacterium tuberculosis (Mtb). DNA polymerase III encoded by DnaE2 of Mtb is specifically required for its survival in vivo, and hence can be considered to be a potential drug target. Amino acid sequence analysis of the MtbDnaE2 and its human counterpart does not show any significant similarity. Therefore, a 3D model of the MtbDnaE2 was generated using Modeller 9v10 with the template structure of E. Coli DNA polymerase III alpha subunit (2HNH_A). The generated models were validated using a number of programmes such as RAMPAGE/PROCHECK, VERIFY_3D, and ProSA. MtbDnaE2 has few conserved residues and four conserved domains similar to that present in DNA polymerase III of E. coli. In silico screening was performed with bioactive anti-tuberculosis compounds and 6-AU (a known inhibitor of DNA polymerase III of Bacillus subtilis) and its analogues against the modeled MtbDnaE2 structure. Docking was performed using GOLD v5.2 software which resulted in the identification of top ten compounds with high GOLD fitness scores and binding affinity (X-Score). To further evaluate the efficacy of these compounds, in silico ADMET analysis was performed using MedChem Designer v3. Given their high binding affinity to the targeted MtbDnaE2, which is essential for DNA replication in the Mtb and good ADMET properties, these compounds are promising candidates for further evaluation and development as anti-tubercular agents.

SUBMITTER: Jadaun A 

PROVIDER: S-EPMC4374717 | biostudies-literature | 2015

REPOSITORIES: biostudies-literature

altmetric image

Publications

In silico screening for novel inhibitors of DNA polymerase III alpha subunit of Mycobacterium tuberculosis (MtbDnaE2, H37Rv).

Jadaun Alka A   Sudhakar D Raja R   Subbarao N N   Dixit Aparna A  

PloS one 20150326 3


Tuberculosis, a pandemic disease is caused by Mycobacterium tuberculosis (Mtb). DNA polymerase III encoded by DnaE2 of Mtb is specifically required for its survival in vivo, and hence can be considered to be a potential drug target. Amino acid sequence analysis of the MtbDnaE2 and its human counterpart does not show any significant similarity. Therefore, a 3D model of the MtbDnaE2 was generated using Modeller 9v10 with the template structure of E. Coli DNA polymerase III alpha subunit (2HNH_A).  ...[more]

Similar Datasets

| S-EPMC3082860 | biostudies-literature
| S-EPMC3639817 | biostudies-literature
| S-EPMC7718890 | biostudies-literature
| S-EPMC6314710 | biostudies-literature
| S-EPMC8330757 | biostudies-literature
| S-EPMC2864675 | biostudies-literature
| S-EPMC6328581 | biostudies-literature
| S-EPMC1264882 | biostudies-other
| S-EPMC91809 | biostudies-literature
| S-EPMC9673877 | biostudies-literature