CCN6 (WISP3) decreases ZEB1-mediated EMT and invasion by attenuation of IGF-1 receptor signaling in breast cancer.
Ontology highlight
ABSTRACT: During progression of breast cancer, CCN6 protein exerts tumor inhibitory functions. CCN6 is a secreted protein that modulates the insulin-like growth factor-1 (IGF-1) signaling pathway. Knockdown of CCN6 in benign mammary epithelial cells triggers an epithelial to mesenchymal transition (EMT), with upregulation of the transcription factor ZEB1/?EF1. How CCN6 regulates ZEB1 expression is unknown. We hypothesized that CCN6 might regulate ZEB1, EMT and breast cancer invasion by modulating IGF-1 signaling. Exogenously added human recombinant CCN6 protein was sufficient to downregulate ZEB1 mRNA and protein levels in CCN6-deficient (CCN6 KD) HME cells and MDA-MB-231 breast cancer cells. Recombinant CCN6 protein decreased invasion of CCN6 KD cells compared with controls. We discovered that knockdown of CCN6 induced IGF-1 secretion in HME cells cultivated in serum-free medium to higher concentrations than found in MDA-MB-231 cells. Treatment with recombinant CCN6 protein was sufficient to decrease IGF-1 protein and mRNA to control levels, rescuing the effect of CCN6 knockdown. Specific inhibition of IGF-1 receptors using the pharmacological inhibitor NVP-AE541 or short hairpin shRNAs revealed that ZEB1 upregulation due to knockdown of CCN6 requires activation of IGF-1 receptor signaling. Recombinant CCN6 blunted IGF-1-induced ZEB1 upregulation in MDA-MB-231 cells. Our data define a pathway in which CCN6 attenuates IGF-1 signaling to decrease ZEB1 expression and invasion in breast cancer. These results suggest that CCN6 could be a target to prevent or halt breast cancer invasion.
SUBMITTER: Lorenzatti G
PROVIDER: S-EPMC3085438 | biostudies-literature | 2011 May
REPOSITORIES: biostudies-literature
ACCESS DATA