Project description:A novel A/H1N1 was identified in the human population in North America in April 2009. The gene constellation of the virus was a combination from swine influenza A viruses (SIV) of North American and Eurasian lineages that had never before been identified in swine or other species.The objectives were to (i) evaluate the clinical response of swine following experimental inoculation with pandemic H1N1 2009; (ii) assess serologic cross-reactivity between H1N1 2009 and contemporary SIV antisera; and (iii) develop a molecular assay to differentiate North American-lineage SIV from H1N1 2009.Experiment 1: Weaned pigs were experimentally infected with A/California/04/2009 (H1N1). Experiment 2: The cross-reactivity of a panel of US SIV H1N1 or H1N2 antisera with three isolates of pandemic A/H1N1 was evaluated. Experiment 3: A polymerase chain reaction (PCR)-based diagnostic test was developed and validated on samples from experimentally infected pigs.In experiment 1, all inoculated pigs demonstrated clinical signs and lesions similar to those induced by endemic SIV. Viable virus and antigen were only detected in the respiratory tract. In experiment 2, serologic cross-reactivity was limited against H1N1 2009 isolates, notably among virus antisera from the same HA phylogenetic cluster. The limited cross-reactivity suggests North American pigs may not be fully protected against H1N1 2009 from previous exposure or vaccination and novel tests are needed to rapidly diagnose the introduction of H1N1 2009. In experiment 3, an RT-PCR test that discriminates between H1N1 2009 and endemic North American SIV was developed and validated on clinical samples.
Project description:Although swine origin A/H1N1/2009 influenza virus (hereafter "pH1N1″) has been detected in swine in 20 countries, there has been no published surveillance of the virus in African livestock. The objective of this study was to assess the circulation of influenza A viruses, including pH1N1 in swine in Cameroon, Central Africa. We collected 108 nasal swabs and 98 sera samples from domestic pigs randomly sampled at 11 herds in villages and farms in Cameroon. pH1N1 was isolated from two swine sampled in northern Cameroon in January 2010. Sera from 28% of these herds were positive for influenza A by competitive ELISA and 92.6% of these swine showed cross reactivity with pandemic A/H1N1/2009 influenza virus isolated from humans. These results provide the first evidence of this virus in the animal population in Africa. In light of the significant role of swine in the ecology of influenza viruses, our results call for greater monitoring and study in Central Africa.
Project description:The emergence of pandemic H1N1/2009 influenza demonstrated that pandemic viruses could be generated in swine. Subsequent reintroduction of H1N1/2009 to swine has occurred in multiple countries. Through systematic surveillance of influenza viruses in swine from a Hong Kong abattoir, we characterize a reassortant progeny of H1N1/2009 with swine viruses. Swine experimentally infected with this reassortant developed mild illness and transmitted infection to contact animals. Continued reassortment of H1N1/2009 with swine influenza viruses could produce variants with transmissibility and altered virulence for humans. Global systematic surveillance of influenza viruses in swine is warranted.
Project description:The 2009 H1N1 influenza virus outbreak is the first pandemic of the twenty-first century. Epidemiological data reveal that of all the people afflicted with H1N1 virus, <5% are over 51 y of age. Interestingly, in the uninfected population, 33% of those >60 y old have pre-existing neutralizing Abs against the 2009 H1N1 virus. This finding suggests that influenza strains that circulated 50-60 y ago might provide cross-protection against the swine-origin 2009 H1N1 influenza virus. To test this, we determined the ability of representative H1N1 influenza viruses that circulated in the human population from 1930 to 2000, to induce cross-reactivity to and cross-protection against the pandemic swine-origin H1N1 virus, A/California/04/09. We show that exposure of mice to the 1947 virus, A/FM/1/47, or the 1934 virus, A/PR/8/34, induced robust cross-protective immune responses and these mice were protected against a lethal challenge with mouse-adapted A/California/04/09 H1N1 virus. Conversely, we observed that mice exposed to the 2009 H1N1 virus were protected against a lethal challenge with mouse-adapted 1947 or 1934 H1N1 viruses. In addition, exposure to the 2009 H1N1 virus induced broad cross-reactivity against H1N1 as well as H3N2 influenza viruses. Finally, we show that vaccination with the older H1N1 viruses, particularly A/FM/1/47, confers protective immunity against the 2009 pandemic H1N1 virus. Taken together, our data provide an explanation for the decreased susceptibility of the elderly to the 2009 H1N1 outbreak and demonstrate that vaccination with the pre-1950 influenza strains can cross-protect against the pandemic swine-origin 2009 H1N1 influenza virus.
Project description:In June 2009, the World Health Organization declared the first influenza pandemic of the 21st century, due to the emergence and rapid spread of new swine origin H1N1 influenza A virus. In contrast to seasonal influenza infections, which typically cause morbidity and mortality in the elderly, this virus caused severe infection in young adults and not the elderly. This phenomenon was attributed to the presence of cross-neutralizing antibodies acquired by older individuals from previous exposure to swine origin influenza. However, this hypothesis could not be empirically tested using clinical data. To address this question, we investigated viral replication and the development of the immune response in naï12 years old) and aged (20 to 24 years old) female rhesus macaques infected with A/California/04/2009 (H1N1), one of the circulating pandemic strains in 2009. We compared viral loads as well as the kinetics and magnitude of the adaptive immune response in peripheral blood and bronchoalveolar lavage samples (BAL) collected longitudinally for 99 days post-infection. Although, adult animals exhibited earlier T cell responses in peripheral blood, aged animals generated a robust T cell response with comparable kinetics and magnitude as those observed in young animals in BAL. Moreover, aged animals generated a higher hemagglutination inhibition titer compared to young animals. We also measured the concentration of several cytokines in BAL supernatant. With the exception of IL-8, which was higher in aged animals, we found no differences in IFNa, IFNb, TNFa, IL-1r, IL-6, IL-15, IL-17, or MCP1 levels. Finally, we compared gene expression infection using microarray analysis of BAL samples taken on days 0, 4, 7, 10, and 14 pi. Our analyses revealed that the largest difference in host response between aged and young animals was detected day 4 post-infection, with significant enrichment for genes associated with inflammation, the innate immune response, and T cell activation in aged animals. The ability of aged animals to generate a robust immune response, especially antibody response, following infection with 2009 H1N1 virus could explain the lack of morbidity normally observed with seasonal influenza viruses in this vulnerable population.
Project description:The 2009 influenza A H1N1 pandemic placed unprecedented demands on antiviral drug resources and the vaccine industry. Carrageenan, an extractive of red algae, has been proven to inhibit infection and multiplication of various enveloped viruses. The aim of this study was to examine the ability of ?-carrageenan to inhibit swine pandemic 2009 H1N1 influenza virus to gain an understanding of antiviral ability of ?-carrageenan. It was here demonstrated that ?-carrageenan had no cytotoxicity at concentrations below 1000 ?g/ml. Hemagglutination, 50% tissue culture infectious dose (TCID50) and cytopathic effect (CPE) inhibition assays showed that ?-carrageenan inhibited A/Swine/Shandong/731/2009 H1N1 (SW731) and A/California/04/2009 H1N1 (CA04) replication in a dose-dependent fashion. Mechanism studies show that the inhibition of SW731 multiplication and mRNA expression was maximized when ?-carrageenan was added before or during adsorption. The result of Hemagglutination inhibition assay indicate that ?-carrageenan specifically targeted HA of SW731 and CA04, both of which are pandemic H1N/2009 viruses, without effect on A/Pureto Rico/8/34 H1N1 (PR8), A/WSN/1933 H1N1 (WSN), A/Swine/Beijing/26/2008 H1N1 (SW26), A/Chicken/Shandong/LY/2008 H9N2 (LY08), and A/Chicken/Shandong/ZB/2007 H9N2 (ZB07) viruses. Immunofluorescence assay and Western blot showed that ?-carrageenan also inhibited SW731 protein expression after its internalization into cells. These results suggest that ?-carrageenan can significantly inhibit SW731 replication by interfering with a few replication steps in the SW731 life cycles, including adsorption, transcription, and viral protein expression, especially interactions between HA and cells. In this way, ?-carrageenan might be a suitable alternative approach to therapy meant to address anti-IAV, which contains an HA homologous to that of SW731.
Project description:The recent pandemic caused by human influenza virus A(H1N1) 2009 contains ancestral gene segments from North American and Eurasian swine lineages as well as from avian and human influenza lineages. The emergence of this A(H1N1) 2009 poses a potential global threat for human health and the fact that it can infect other species, like pigs, favours a possible encounter with other influenza viruses circulating in swine herds. In Europe, H1N1, H1N2 and H3N2 subtypes of swine influenza virus currently have a high prevalence in commercial farms. To better assess the risk posed by the A(H1N1) 2009 in the actual situation of swine farms, we sought to analyze whether a previous infection with a circulating European avian-like swine A/Swine/Spain/53207/2004 (H1N1) influenza virus (hereafter referred to as SwH1N1) generated or not cross-protective immunity against a subsequent infection with the new human pandemic A/Catalonia/63/2009 (H1N1) influenza virus (hereafter referred to as pH1N1) 21 days apart. Pigs infected only with pH1N1 had mild to moderate pathological findings, consisting on broncho-interstitial pneumonia. However, pigs inoculated with SwH1N1 virus and subsequently infected with pH1N1 had very mild lung lesions, apparently attributed to the remaining lesions caused by SwH1N1 infection. These later pigs also exhibited boosted levels of specific antibodies. Finally, animals firstly infected with SwH1N1 virus and latter infected with pH1N1 exhibited undetectable viral RNA load in nasal swabs and lungs after challenge with pH1N1, indicating a cross-protective effect between both strains.
Project description:In June 2009, the World Health Organization declared the first influenza pandemic of the 21st century, due to the emergence and rapid spread of new swine origin H1N1 influenza A virus. In contrast to seasonal influenza infections, which typically cause morbidity and mortality in the elderly, this virus caused severe infection in young adults and not the elderly. This phenomenon was attributed to the presence of cross-neutralizing antibodies acquired by older individuals from previous exposure to swine origin influenza. However, this hypothesis could not be empirically tested using clinical data. To address this question, we investigated viral replication and the development of the immune response in naï12 years old) and aged (20 to 24 years old) female rhesus macaques infected with A/California/04/2009 (H1N1), one of the circulating pandemic strains in 2009. We compared viral loads as well as the kinetics and magnitude of the adaptive immune response in peripheral blood and bronchoalveolar lavage samples (BAL) collected longitudinally for 99 days post-infection. Although, adult animals exhibited earlier T cell responses in peripheral blood, aged animals generated a robust T cell response with comparable kinetics and magnitude as those observed in young animals in BAL. Moreover, aged animals generated a higher hemagglutination inhibition titer compared to young animals. We also measured the concentration of several cytokines in BAL supernatant. With the exception of IL-8, which was higher in aged animals, we found no differences in IFNa, IFNb, TNFa, IL-1r, IL-6, IL-15, IL-17, or MCP1 levels. Finally, we compared gene expression infection using microarray analysis of BAL samples taken on days 0, 4, 7, 10, and 14 pi. Our analyses revealed that the largest difference in host response between aged and young animals was detected day 4 post-infection, with significant enrichment for genes associated with inflammation, the innate immune response, and T cell activation in aged animals. The ability of aged animals to generate a robust immune response, especially antibody response, following infection with 2009 H1N1 virus could explain the lack of morbidity normally observed with seasonal influenza viruses in this vulnerable population. 16 female rhesus macaques (Macaca Mulatta) 10-12 (Adult) and 20-24 years (Old/Aged) of age were used in these studies. Animals were infected with A/California/04/ 2009 H1N1 using a combinatory of intra-tracheal (4ml), intranasal (0.5 ml/nostril), and conjunctival (0.5 ml/eyelid) routes for a total dose of 7x106 TCID50 dose. Microarray analysis was performed on Bronchoalveolar lavage (BAL) samples collected on days 0, 4, 7, 10 and 14. Note: One of the Day 0 array did not pass QC metrics so for this animal the average of the other Day 0 samples from that group was utilized. At the end of the study animals were released back to the colony.
Project description:The 1918 influenza A virus caused the most devastating pandemic, killing approximately 50 million people worldwide. Immunization with 1918-like and classical swine H1N1 virus vaccines results in cross-protective antibodies against the 2009 H1N1 pandemic influenza, indicating antigenic similarities among these viruses. In this study, we demonstrate that vaccination with the 2009 pandemic H1N1 vaccine elicits 1918 virus cross-protective antibodies in mice and humans, and that vaccination or passive transfer of human-positive sera reduced morbidity and conferred full protection from lethal challenge with the 1918 virus in mice. The spread of the 2009 H1N1 influenza virus in the population worldwide, in addition to the large number of individuals already vaccinated, suggests that a large proportion of the population now have cross-protective antibodies against the 1918 virus, greatly alleviating concerns and fears regarding the accidental exposure/release of the 1918 virus from the laboratory and the use of the virus as a bioterrorist agent.
Project description:Pandemic H1N1/2009 viruses have been stabilized in swine herds, and some strains display higher pathogenicity than the human-origin isolates. In this study, high-throughput RNA sequencing (RNA-seq) is applied to explore the systemic transcriptome responses of the mouse lungs infected by swine (Jia6/10) and human (LN/09) H1N1/2009 viruses. The transcriptome data show that Jia6/10 activates stronger virus-sensing signals, such as the toll-like receptor, RIG-I like receptor and NOD-like receptor signalings, as well as a stronger NF-?B and JAK-STAT signals, which play significant roles in inducing innate immunity. Most cytokines and interferon-stimulated genes show higher expression lever in Jia/06 infected groups. Meanwhile, virus Jia6/10 activates stronger production of reactive oxygen species, which might further promote higher mutation rate of the virus genome. Collectively, our data reveal that the swine-origin pandemic H1N1/2009 virus elicits a stronger innate immune reaction and pro-oxidation stimulation, which might relate closely to the increasing pathogenicity.