Unknown

Dataset Information

0

Combined genetic and metabolic manipulation of lipids in Rhodobacter sphaeroides reveals non-phospholipid substitutions in fully active cytochrome c oxidase.


ABSTRACT: A specific requirement for lipids, particularly cardiolipin (CL), in cytochrome c oxidase (CcO) has been reported in many previous studies using mainly in vitro lipid removal approaches in mammalian systems. Our accompanying paper shows that CcO produced in markedly CL-depleted Rhodobacter sphaeroides displays wild-type properties in all respects, likely allowed by quantitative substitution with other negatively charged lipids. To further examine the structural basis for the lipid requirements of R. sphaeroides CcO and the extent of interchangeability between lipids, we employed a metabolic approach to enhance the alteration of the lipid profiles of the CcO-expressing strains of R. sphaeroides in vivo using a phosphate-limiting growth medium in addition to the CL-deficient mutation. Strikingly, the purified CcO produced under these conditions still maintained wild-type function and characteristics, in spite of even greater depletion of cardiolipin compared to that of the CL-deficient mutant alone (undetectable by MS) and drastically altered profiles of all the phospholipids and non-phospholipids. The lipids in the membrane and in the purified CcO were identified and quantified by ESI and MALDI mass spectrometry and tandem mass spectrometry. Comparison between the molecular structures of those lipids that showed major changes provides new insight into the structural rationale for the flexible lipid requirements of CcO from R. sphaeroides and reveals a more comprehensive interchangeability network between different phospholipids and non-phospholipids.

SUBMITTER: Zhang X 

PROVIDER: S-EPMC3097905 | biostudies-literature | 2011 May

REPOSITORIES: biostudies-literature

altmetric image

Publications

Combined genetic and metabolic manipulation of lipids in Rhodobacter sphaeroides reveals non-phospholipid substitutions in fully active cytochrome c oxidase.

Zhang Xi X   Hiser Carrie C   Tamot Banita B   Benning Christoph C   Reid Gavin E GE   Ferguson-Miller Shelagh M SM  

Biochemistry 20110422 19


A specific requirement for lipids, particularly cardiolipin (CL), in cytochrome c oxidase (CcO) has been reported in many previous studies using mainly in vitro lipid removal approaches in mammalian systems. Our accompanying paper shows that CcO produced in markedly CL-depleted Rhodobacter sphaeroides displays wild-type properties in all respects, likely allowed by quantitative substitution with other negatively charged lipids. To further examine the structural basis for the lipid requirements o  ...[more]

Similar Datasets

| S-EPMC2874421 | biostudies-literature
| S-EPMC4867122 | biostudies-literature
| S-EPMC3082432 | biostudies-literature
| S-EPMC21120 | biostudies-literature
| S-EPMC3155654 | biostudies-literature
| S-EPMC2862684 | biostudies-literature
| S-EPMC3800205 | biostudies-literature
| S-EPMC1637549 | biostudies-literature
| S-EPMC3097902 | biostudies-literature
| S-EPMC3342662 | biostudies-literature