Pattern recognition scavenger receptor CD204 attenuates Toll-like receptor 4-induced NF-kappaB activation by directly inhibiting ubiquitination of tumor necrosis factor (TNF) receptor-associated factor 6.
Ontology highlight
ABSTRACT: The collaboration and cross-talk between different classes of innate pattern recognition receptors are crucial for a well coordinated inflammatory response and host defense. Here we report a previously unrecognized role of scavenger receptor A (SRA; also known as CD204) as a signaling regulator in the context of Toll-like receptor 4 (TLR4) activation. We show that SRA/CD204 deficiency leads to greater sensitivity to LPS-induced endotoxic shock. SRA/CD204 down-regulates inflammatory gene expression in dendritic cells by suppressing TLR4-induced activation of the transcription factor NF-?B. For the first time, we demonstrate that SRA/CD204 executes its regulatory functions by directly interacting with the TRAF-C domain of TNF receptor-associated factor 6 (TRAF6), resulting in inhibition of TRAF6 dimerization and ubiquitination. The attenuation of NF-?B activity by SRA/CD204 is independent of its ligand-binding domain, indicating that the signaling-regulatory feature of SRA/CD204 can be uncoupled from its conventional endocytic functions. Collectively, we have identified the molecular linkage between SRA/CD204 and the TLR4 signaling pathways, and our results reveal a novel mechanism by which a non-TLR pattern recognition receptor restricts TLR4 activation and consequent inflammatory response.
SUBMITTER: Yu X
PROVIDER: S-EPMC3099696 | biostudies-literature | 2011 May
REPOSITORIES: biostudies-literature
ACCESS DATA