Unknown

Dataset Information

0

SiRNA-like double-stranded RNAs are specifically protected against degradation in human cell extract.


ABSTRACT: RNA interference (RNAi) is a set of intracellular pathways in eukaryotes that controls both exogenous and endogenous gene expression. The power of RNAi to knock down (silence) any gene of interest by the introduction of synthetic small-interfering (si)RNAs has afforded powerful insight into biological function through reverse genetic approaches and has borne a new field of gene therapeutics. A number of questions are outstanding concerning the potency of siRNAs, necessitating an understanding of how short double-stranded RNAs are processed by the cell. Recent work suggests unmodified siRNAs are protected in the intracellular environment, although the mechanism of protection still remains unclear. We have developed a set of doubly-fluorophore labeled RNAs (more precisely, RNA/DNA chimeras) to probe in real-time the stability of siRNAs and related molecules by fluorescence resonance energy transfer (FRET). We find that these RNA probes are substrates for relevant cellular degradative processes, including the RNase H1 mediated degradation of an DNA/RNA hybrid and Dicer-mediated cleavage of a 24-nucleotide (per strand) double-stranded RNA. In addition, we find that 21- and 24-nucleotide double-stranded RNAs are relatively protected in human cytosolic cell extract, but less so in blood serum, whereas an 18-nucleotide double-stranded RNA is less protected in both fluids. These results suggest that RNAi effector RNAs are specifically protected in the cellular environment and may provide an explanation for recent results showing that unmodified siRNAs in cells persist intact for extended periods of time.

SUBMITTER: Hoerter JA 

PROVIDER: S-EPMC3103583 | biostudies-literature | 2011

REPOSITORIES: biostudies-literature

altmetric image

Publications

siRNA-like double-stranded RNAs are specifically protected against degradation in human cell extract.

Hoerter John A H JA   Krishnan Vishalakshi V   Lionberger Troy A TA   Walter Nils G NG  

PloS one 20110527 5


RNA interference (RNAi) is a set of intracellular pathways in eukaryotes that controls both exogenous and endogenous gene expression. The power of RNAi to knock down (silence) any gene of interest by the introduction of synthetic small-interfering (si)RNAs has afforded powerful insight into biological function through reverse genetic approaches and has borne a new field of gene therapeutics. A number of questions are outstanding concerning the potency of siRNAs, necessitating an understanding of  ...[more]

Similar Datasets

| S-EPMC3401431 | biostudies-literature
| S-EPMC9850877 | biostudies-literature
2024-08-16 | GSE246026 | GEO
| S-EPMC21814 | biostudies-literature
| S-EPMC8256860 | biostudies-literature
| S-EPMC5852647 | biostudies-literature
2014-12-14 | GSE62930 | GEO
| S-EPMC24510 | biostudies-literature
2014-12-14 | E-GEOD-62930 | biostudies-arrayexpress
| S-EPMC4348642 | biostudies-literature