Project description:In October 2010, a virulent South Asian strain of El Tor cholera began to spread in Haiti. Interventions have included treatment of cases and improved sanitation. Use of cholera vaccines would likely have further reduced morbidity and mortality, but such vaccines are in short supply and little is known about effective vaccination strategies for epidemic cholera. We use a mathematical cholera transmission model to assess different vaccination strategies. With limited vaccine quantities, concentrating vaccine in high-risk areas is always most efficient. We show that targeting one million doses of vaccine to areas with high exposure to Vibrio cholerae, enough for two doses for 5% of the population, would reduce the number of cases by 11%. The same strategy with enough vaccine for 30% of the population with modest hygienic improvement could reduce cases by 55% and save 3,320 lives. For epidemic cholera, we recommend a large mobile stockpile of enough vaccine to cover 30% of a country's population to be reactively targeted to populations at high risk of exposure.
Project description:This study describes the apparent discontinuation of cholera transmission in Haiti since February 2019. Because vulnerabilities persist and vaccination remains limited, our findings suggest that case-area targeted interventions conducted by rapid response teams played a key role. We question the presence of environmental reservoirs in Haiti and discuss progress toward elimination.
Project description:In response to the recent cholera outbreak, a public health response targeted high-risk communities, including resource-poor communities in Port-au-Prince, Haiti. A survey covering knowledge and practices indicated that hygiene messages were received and induced behavior change, specifically related to water treatment practices. Self-reported household water treatment increased from 30.3% to 73.9%.
Project description:The 2010 cholera epidemic in Haiti was one of the largest cholera epidemics ever recorded. To estimate the magnitude of the death toll during the first wave of the epidemic, we retrospectively conducted surveys at 4 sites in the northern part of Haiti. Overall, 70,903 participants were included; at all sites, the crude mortality rates (19.1-35.4 deaths/1,000 person-years) were higher than the expected baseline mortality rate for Haiti (9 deaths/1,000 person-years). This finding represents an excess of 3,406 deaths (2.9-fold increase) for the 4.4% of the Haiti population covered by these surveys, suggesting a substantially higher cholera mortality rate than previously reported.
Project description:Cholera has affected Haiti with damping waves of outbreaks since October 2010. However, mechanisms behind disease persistence during lull periods remain poorly understood. By mid 2014, cholera transmission seemed to only persist in the northern part of Haiti. Meanwhile, cholera appeared nearly extinct in the capital, Port-au-Prince, where it eventually exploded in September 2014. This study aimed to determine whether this outbreak was caused by local undetected cases or by re-importation of the disease from the north. Applying an integrated approach between November 2013 and November 2014, we assessed the temporal and spatial dynamics of cholera using routine surveillance data and performed population genetics analyses of 178 Vibrio cholerae O1 clinical isolates. The results suggest that the northern part of the country exhibited a persisting metapopulation pattern with roaming oligoclonal outbreaks that could not be effectively controlled. Conversely, undetected and unaddressed autochthonous low-grade transmission persisted in the Port-au-Prince area, which may have been the source of the acute outbreak in late-2014. Cholera genotyping is a simple but powerful tool to adapt control strategies based on epidemic specificities. In Haiti, these data have already yielded significant progress in cholera surveillance, which is a key component of the strategy to eventually eliminate cholera.
Project description:Centre Department, Haiti, was the origin of a major cholera epidemic during 2010-2019. Although no fine-scale spatial delineation is officially available, we aimed to analyze determinants of cholera at the local level and identify priority localities in need of interventions. After estimating the likely boundaries of 1,730 localities by using Voronoi polygons, we mapped 5,322 suspected cholera cases reported during January 2015-September 2016 by locality alongside environmental and socioeconomic variables. A hierarchical clustering on principal components highlighted 2 classes with high cholera risk: localities close to rivers and unimproved water sources (standardized incidence ratio 1.71, 95% CI 1.02-2.87; p = 0.04) and urban localities with markets (standardized incidence ratio 1.69, 95% CI 1.25-2.29; p = 0.0006). Our analyses helped identify and characterize areas where efforts should be focused to reduce vulnerability to cholera and other waterborne diseases; these methods could be used in other contexts.
Project description:Cholera reappeared in Haiti in October, 2010 after decades of absence. Cases were first detected in Artibonite region and in the ensuing months the disease spread to every department in the country. The rate of increase in the number of cases at the start of epidemics provides valuable information about the basic reproductive number (R(0)). Quantitative analysis of such data gives useful information for planning and evaluating disease control interventions, including vaccination. Using a mathematical model, we fitted data on the cumulative number of reported hospitalized cholera cases in Haiti. R(0) varied by department, ranging from 1.06 to 2.63. At a national level, 46% vaccination coverage would result in an (R(0)) <1, which would suppress transmission. In the current debate on the use of cholera vaccines in endemic and non-endemic regions, our results suggest that moderate cholera vaccine coverage would be an important element of disease control in Haiti.
Project description:A cholera outbreak began in Haiti during October, 2010. Spatiotemporal patterns of household-level cholera in Ouest Department showed that the initial clusters tended to follow major roadways; subsequent clusters occurred further inland. Our data highlight transmission pathway complexities and the need for case and household-level analysis to understand disease spread and optimize interventions.