Ontology highlight
ABSTRACT: Background
Pasteurella multocida causes disease in many host species throughout the world. In bovids, it contributes to bovine respiratory disease (BRD) and causes haemorrhagic septicaemia (HS). Previous studies have suggested that BRD-associated P. multocida isolates are of limited diversity. A multilocus sequence typing (MLST) scheme for P. multocida was used to determine whether the low levels of diversity reported are due to the limited discriminatory power of the typing method used, restricted sample selection or true niche association. Bovine respiratory isolates of P. multocida (n = 133) from the UK, the USA and France, collected between 1984 and 2008 from both healthy and clinically affected animals, were typed using MLST. Isolates of P. multocida from cases of HS, isolates from other host species and data from the MLST database were used as comparison.Results
Bovine respiratory isolates were found to be clonal (I(S)(A) 0.45) with 105/128 belonging to clonal complex 13 (CC13). HS isolates were not related to bovine respiratory isolates. Of the host species studied, the majority had their own unique sequence types (STs), with few STs being shared across host species, although there was some cross over between porcine and bovine respiratory isolates. Avian, ovine and porcine isolates showed greater levels of diversity compared to cattle respiratory isolates, despite more limited geographic origins.Conclusions
The homogeneity of STs of bovine respiratory P. multocida observed, and the differences between these and P. multocida subpopulations from bovine non-respiratory isolates and non-bovine hosts may indicate niche association.
SUBMITTER: Hotchkiss EJ
PROVIDER: S-EPMC3120644 | biostudies-literature | 2011 May
REPOSITORIES: biostudies-literature
BMC microbiology 20110525
<h4>Background</h4>Pasteurella multocida causes disease in many host species throughout the world. In bovids, it contributes to bovine respiratory disease (BRD) and causes haemorrhagic septicaemia (HS). Previous studies have suggested that BRD-associated P. multocida isolates are of limited diversity. A multilocus sequence typing (MLST) scheme for P. multocida was used to determine whether the low levels of diversity reported are due to the limited discriminatory power of the typing method used, ...[more]