Unknown

Dataset Information

0

Antimicrobial penetration and efficacy in an in vitro oral biofilm model.


ABSTRACT: The penetration and overall efficacy of six mouthrinse actives was evaluated by using an in vitro flow cell oral biofilm model. The technique involved preloading biofilm cells with a green fluorescent dye that leaked out as the cells were permeabilized by a treatment. The loss of green color, and of biomass, was observed by time-lapse microscopy during 60 min of treatment under continuous flow conditions. The six actives analyzed were ethanol, sodium lauryl sulfate, triclosan, chlorhexidine digluconate (CHX), cetylpyridinium chloride, and nisin. Each of these agents effected loss of green fluorescence throughout biofilm cell clusters, with faster action at the edge of a cell cluster and slower action in the cluster center. The time to reach half of the initial fluorescent intensity at the center of a cell cluster, which can be viewed as a combined penetration and biological action time, ranged from 0.6 to 19 min for the various agents. These times are much longer than the predicted penetration time based on diffusion alone, suggesting that anti-biofilm action was controlled more by the biological action time than by the penetration time of the active. None of the agents tested caused any removal of the biofilm. The extent of fluorescence loss after 1 h of exposure to an active ranged from 87 to 99.5%, with CHX being the most effective. The extent of fluorescence loss in vitro, but not penetration and action time, correlated well with the relative efficacy data from published clinical trials.

SUBMITTER: Corbin A 

PROVIDER: S-EPMC3122404 | biostudies-literature | 2011 Jul

REPOSITORIES: biostudies-literature

altmetric image

Publications

Antimicrobial penetration and efficacy in an in vitro oral biofilm model.

Corbin Audrey A   Pitts Betsey B   Parker Albert A   Stewart Philip S PS  

Antimicrobial agents and chemotherapy 20110502 7


The penetration and overall efficacy of six mouthrinse actives was evaluated by using an in vitro flow cell oral biofilm model. The technique involved preloading biofilm cells with a green fluorescent dye that leaked out as the cells were permeabilized by a treatment. The loss of green color, and of biomass, was observed by time-lapse microscopy during 60 min of treatment under continuous flow conditions. The six actives analyzed were ethanol, sodium lauryl sulfate, triclosan, chlorhexidine digl  ...[more]

Similar Datasets

| S-EPMC4332733 | biostudies-literature
| S-EPMC7583357 | biostudies-literature
| S-EPMC5610510 | biostudies-literature
| S-EPMC6056003 | biostudies-literature
| S-EPMC4649157 | biostudies-literature
| S-EPMC6491613 | biostudies-literature
| S-EPMC5772662 | biostudies-literature
| S-EPMC5030783 | biostudies-literature
| S-EPMC8622444 | biostudies-literature
| S-EPMC2151458 | biostudies-literature