Transcriptome profiling of chemosensory appendages in the malaria vector Anopheles gambiae reveals tissue- and sex-specific signatures of odor coding.
Ontology highlight
ABSTRACT: Chemosensory signal transduction guides the behavior of many insects, including Anopheles gambiae, the major vector for human malaria in sub-Saharan Africa. To better understand the molecular basis of mosquito chemosensation we have used whole transcriptome RNA sequencing (RNA-seq) to compare transcript expression profiles between the two major chemosensory tissues, the antennae and maxillary palps, of adult female and male An. gambiae.We compared chemosensory tissue transcriptomes to whole body transcriptomes of each sex to identify chemosensory enhanced genes. In the six data sets analyzed, we detected expression of nearly all known chemosensory genes and found them to be highly enriched in both olfactory tissues of males and females. While the maxillary palps of both sexes demonstrated strict chemosensory gene expression overlap, we observed acute differences in sensory specialization between male and female antennae. The relatively high expression levels of chemosensory genes in the female antennae reveal its role as an organ predominately assigned to chemosensation. Remarkably, the expression of these genes was highly conserved in the male antennae, but at much lower relative levels. Alternatively, consistent with a role in mating, the male antennae displayed significant enhancement of genes involved in audition, while the female enhancement of these genes was observed, but to a lesser degree.These findings suggest that the chemoreceptive spectrum, as defined by gene expression profiles, is largely similar in female and male An. gambiae. However, assuming sensory receptor expression levels are correlated with sensitivity in each case, we posit that male and female antennae are perceptive to the same stimuli, but possess inverse receptive prioritizations and sensitivities. Here we have demonstrated the use of RNA-seq to characterize the sensory specializations of an important disease vector and grounded future studies investigating chemosensory processes.
<h4>Background</h4>Chemosensory signal transduction guides the behavior of many insects, including Anopheles gambiae, the major vector for human malaria in sub-Saharan Africa. To better understand the molecular basis of mosquito chemosensation we have used whole transcriptome RNA sequencing (RNA-seq) to compare transcript expression profiles between the two major chemosensory tissues, the antennae and maxillary palps, of adult female and male An. gambiae.<h4>Results</h4>We compared chemosensory ...[more]
Project description:A systematic functional analysis across much of the conventional Anopheles gambiae odorant receptor (AgOR) repertoire was carried out in Xenopus oocytes using two-electrode, voltage-clamp electrophysiology. The resulting data indicate that each AgOR manifests a distinct odor-response profile and tuning breadth. The large diversity of tuning responses ranges from AgORs that are responsive to a single or small number of odorants (specialists) to more broadly tuned receptors (generalists). Several AgORs were identified that respond robustly to a range of human volatiles that may play a critical role in anopheline host selection. AgOR responses were analyzed further by constructing a multidimensional odor space representing the relationships between odorants and AgOR responses. Within this space, the distance between odorants is related to both chemical class and concentration and may correlate with olfactory discrimination. This study provides a comprehensive overview of olfactory coding mechanisms of An. gambiae that ultimately may aid in fostering the design and development of olfactory-based strategies for reducing the transmission of malaria and other mosquito-borne diseases.
Project description:Ammonia is one of the principal kairomones originating from human and other animal emanations and in that context, plays an essential role in the host-seeking behaviors of the malaria vector mosquito Anopheles gambiae. Nevertheless, despite its importance in directing host-seeking, the mechanisms underlying ammonia detection in the mosquito olfactory system remains largely unknown. In addition to ongoing efforts to identify and characterize the molecular receptors that underlie ammonia sensitivity, previous studies have revealed a prominent role for ammonium transporters (Amt) in modulating antennal and behavioral responses in Drosophila melanogaster and An. gambiae. In the former, localization of DmAmt in antennal sensilla to auxiliary cells surrounding the ammonia sensory neurons led to the hypothesis that its role was to clear excess ammonium ions in the sensillar lymph. In the latter, RT-PCR and heterologous expression have been used to examine the expression and functional characteristics of the An. gambiae ammonium transporter, AgAmt. We now employ advanced transgenic tools to comprehensively examine AgAmt spatial localization across the peripheral chemosensory appendages in larvae and adult female An. gambiae. In the larval antennae, AgAmt appears localized in both neuronal and auxiliary cells. In contrast to D. melanogaster, in the adult antennae, AgAmt-derived signals are observed in both non-neuronal auxiliary cells and in sensory neurons in ammonia-responsive basiconic and coeloconic sensilla. In the maxillary palps, labella, and tarsi, AgAmt appears restricted to sensory neurons. We have also characterized the responses to ammonia of adult antennal coeloconic sensilla and maxillary palp capitate pegs revealing a correlation between sensillar AgAmt expression and ammonia sensitivity. Taken together, these data suggest that AgAmt may play heterogeneous roles in the adult and larval chemosensory apparatus and potentially broad utility as a supra-receptor target in mosquito control.
Project description:BackgroundMany species of mosquitoes, including the major malaria vector Anopheles gambiae, utilize carbon dioxide (CO(2)) and 1-octen-3-ol as olfactory cues in host-seeking behaviors that underlie their vectorial capacity. However, the molecular and cellular basis of such olfactory responses remains largely unknown.ResultsHere, we use molecular and physiological approaches coupled with systematic functional analyses to define the complete olfactory sensory map of the An. gambiae maxillary palp, an olfactory appendage that mediates the detection of these compounds. In doing so, we identify three olfactory receptor neurons (ORNs) that are organized in stereotyped triads within the maxillary-palp capitate-peg-sensillum population. One ORN is CO(2)-responsive and characterized by the coexpression of three receptors that confer CO(2) responses, whereas the other ORNs express characteristic odorant receptors (AgORs) that are responsible for their in vivo olfactory responses.ConclusionsOur results describe a complete and highly concordant map of both the molecular and cellular olfactory components on the maxillary palp of the adult female An. gambiae mosquito. These results also facilitate the understanding of how An. gambiae mosquitoes sense olfactory cues that might be exploited to compromise their ability to transmit malaria.
Project description:BackgroundThe malaria mosquito Anopheles gambiae has a high preference for human hosts, a characteristic that contributes greatly to its capacity for transmitting human malaria. A sibling species, An. quadriannulatus, has a quite different host preference and feeds mostly on bovids. For this reason it does not contribute to human malaria transmission. Host seeking in mosquitoes is modulated by the olfactory system, which is primarily housed in the antennae and maxillary palps. Therefore, the detection of differing host odors by sibling species may be reflected in the expression level of the olfactory genes involved. Accordingly, we compared the transcriptomes of the antennae and maxillary palps of An. gambiae and An. quadriannulatus.ResultsWe identified seven relatively abundant olfactory receptors, nine ionotropic receptors and three odorant binding proteins that are substantially up-regulated in An. gambiae antennae. Interestingly, we find that the maxillary palps of An. gambiae contain a species-specific olfactory receptor, Or52, and five An. gambiae-specific gustatory receptors (AgGr48-52) that are relatively abundant. These five gustatory receptors are also expressed in An. gambiae antennae, although at lower level, indicating a likely role in olfaction, rather than gustation. We also document an approximately three-fold higher overall expression of olfaction genes in the maxillary palps of An. quadriannulatus, indicating an important role of this organ in the olfaction system of this species. Finally, the expression of the CO2 receptor genes is five to six-fold higher in the zoophilic An. quadriannulatus, implying a much higher sensitivity for detecting CO2.ConclusionsThese results identify potential human host preference genes in the malaria vector An. gambiae. Interestingly, species-specific expression of several gustatory receptors in the olfactory organs indicate a role in olfaction rather than gustation. Additionally, a more expansive role for maxillary palps in olfaction is implicated than previously thought, albeit more so in the zoophilic An. quadriannulatus.
Project description:Paratransgenesis, the genetic manipulation of insect symbiotic microorganisms, is being considered as a potential method to control vector-borne diseases such as malaria. The feasibility of paratransgenic malaria control has been hampered by the lack of candidate symbiotic microorganisms for the major vector Anopheles gambiae. In other systems, densonucleosis viruses (DNVs) are attractive agents for viral paratransgenesis because they infect important vector insects, can be genetically manipulated and are transmitted to subsequent generations. However, An. gambiae has been shown to be refractory to DNV dissemination. We discovered, cloned and characterized the first known DNV (AgDNV) capable of infection and dissemination in An. gambiae. We developed a flexible AgDNV-based expression vector to express any gene of interest in An. gambiae using a two-plasmid helper-transducer system. To demonstrate proof-of-concept of the viral paratransgenesis strategy, we used this system to transduce expression of an exogenous gene (enhanced green fluorescent protein; EGFP) in An. gambiae mosquitoes. Wild-type and EGFP-transducing AgDNV virions were highly infectious to An. gambiae larvae, disseminated to and expressed EGFP in epidemiologically relevant adult tissues such as midgut, fat body and ovaries and were transmitted to subsequent mosquito generations. These proof-of-principle data suggest that AgDNV could be used as part of a paratransgenic malaria control strategy by transduction of anti-Plasmodium peptides or insect-specific toxins in Anopheles mosquitoes. AgDNV will also be extremely valuable as an effective and easy-to-use laboratory tool for transient gene expression or RNAi in An. gambiae.
Project description:In Anopheles gambiae, sex-regulated genes are responsible for controlling gender dimorphism and are therefore crucial in determining the ability of female mosquitoes to transmit human malaria. The identification and functional characterization of these genes will shed light on the sexual development and maturation of mosquitoes and provide useful targets for genetic control measures aimed at reducing mosquito fertility and/or distorting the sex ratio.We conducted a genome wide transcriptional analysis of sex-regulated genes from early developmental stages through adulthood combined with functional screening of novel gonadal genes. Our results demonstrate that the male-biased genes undergo a major transcription turnover starting from larval stages to adulthood. The male biased genes at the adult stage include a significant high number of unique sequences compared to the rest of the genome. This is in contrast to female-biased genes that are much more conserved and are mainly activated during late developmental stages.The high frequency of unique sequences would indicate that male-biased genes evolve more rapidly than the rest of the genome. This finding is particularly intriguing because A. gambiae is a strictly female monogamous species suggesting that driving forces in addition to sperm competition must account for the rapid evolution of male-biased genes. We have also identified and functionally characterized a number of previously unknown A. gambiae testis- and ovary-specific genes. Two of these genes, zero population growth and a suppressor of defective silencing 3 domain of the histone deacetylase co-repressor complex, were shown to play a key role in gonad development.
Project description:Only female insects transmit diseases such as malaria, dengue and Zika; therefore, control methods that bias the sex ratio of insect offspring have long been sought. Genetic elements such as sex-chromosome drives can distort sex ratios to produce unisex populations that eventually collapse, but the underlying molecular mechanisms are unknown. We report a male-biased sex-distorter gene drive (SDGD) in the human malaria vector Anopheles gambiae. We induced super-Mendelian inheritance of the X-chromosome-shredding I-PpoI nuclease by coupling this to a CRISPR-based gene drive inserted into a conserved sequence of the doublesex (dsx) gene. In modeling of invasion dynamics, SDGD was predicted to have a quicker impact on female mosquito populations than previously developed gene drives targeting female fertility. The SDGD at the dsx locus led to a male-only population from a 2.5% starting allelic frequency in 10-14 generations, with population collapse and no selection for resistance. Our results support the use of SDGD for malaria vector control.
Project description:The sustainability of malaria control in Africa is threatened by the rise of insecticide resistance in Anopheles mosquitoes, which transmit the disease. To gain a deeper understanding of how mosquito populations are evolving, here we sequenced the genomes of 765 specimens of Anopheles gambiae and Anopheles coluzzii sampled from 15 locations across Africa, and identified over 50 million single nucleotide polymorphisms within the accessible genome. These data revealed complex population structure and patterns of gene flow, with evidence of ancient expansions, recent bottlenecks, and local variation in effective population size. Strong signals of recent selection were observed in insecticide-resistance genes, with several sweeps spreading over large geographical distances and between species. The design of new tools for mosquito control using gene-drive systems will need to take account of high levels of genetic diversity in natural mosquito populations.
Project description:Chemosensory proteins (CSPs) are identifiable by four spatially conserved Cysteine residues in their primary structure or by two disulfide bridges in their tertiary structure according to the previously identified olfactory specific-D related proteins. A genomics- and bioinformatics-based approach is taken in the present study to identify the putative CSPs in the malaria-carrying mosquito, Anopheles gambiae. The results show that five out of the nine annotated candidates are the most possible Anopheles CSPs of A. gambiae. This study lays the foundation for further functional identification of Anopheles CSPs, though all of these candidates need additional experimental verification.
Project description:Malaria is a major global health problem, where the anautogenous female mosquito Anopheles gambiae serves as a major vector. In order to combat this devastating disease, understanding mosquito physiology is paramount. Numerous studies in the vector field demonstrate that small non-coding RNAs (ncRNAs) play essential roles in numerous aspects of mosquito physiology. While our previous miRNA annotation work demonstrated expression dynamics across differing tissues, miRNAs represented less than 20% of all small ncRNAs in our small RNA-Seq libraries. To this end, we systematically classified multiple small ncRNA groups across mosquito tissues. Here we (i) determined a new enriched-midgut miRNA, (ii) updated the piRNA annotation in ovaries with a genomic map of unique-mapping piRNAs, (iii) identified pan-tissue and tissue-enriched mRNA-derived small ncRNAs, and (iv) assessed AGO1- and AGO2- loading of candidate small ncRNAs. Continued research will broaden our view of small ncRNAs and greatly aide in our understanding on how these molecules contribute to mosquito physiology.