BMP-2 and TGF?2 shared pathways regulate endocardial cell transformation.
Ontology highlight
ABSTRACT: Valvular heart disease is a major cause of mortality and morbidity. Revealing the cellular processes and molecules that regulate valve formation and remodeling is required to develop effective therapies. A key step in valve formation during heart development is the epithelial-mesenchymal transformation (EMT) of a subpopulation of endocardial cells in the atrioventricular cushion (AVC). The type III transforming growth factor-? receptor (TGF?R3) regulates AVC endocardial cell EMT in vitro and mesenchymal cell differentiation in vivo. Little is known concerning the signaling mechanisms downstream of TGF?R3. Here we use endocardial cell EMT in vitro to determine the role of 2 well-characterized downstream TGF? signaling pathways in TGF?R3-dependent endocardial cell EMT. Targeting of Smad4, the common mediator Smad, demonstrated that Smad signaling is required for EMT in the AVC and TGF?R3-dependent EMT stimulated by TGF?2 or BMP-2. Although we show that Smads 1, 2, 3, and 5 are required for AVC EMT, overexpression of Smad1 or Smad3 is not sufficient to induce EMT. Consistent with the activation of the Par6/Smurf1 pathway downstream of TGF?R3, targeting ALK5, Par6, or Smurf1 significantly inhibited EMT in response to either TGF?2 or BMP-2. The requirement for ALK5 activity, Par6, and Smurf1 for TGF?R3-dependent endocardial cell EMT is consistent with the documented role of this pathway in the dissolution of tight junctions. Taken together, our data demonstrate that TGF?R3-dependent endocardial cell EMT stimulated by either TGF?2 or BMP-2 requires Smad4 and the activation of the Par6/Smurf1 pathway.
SUBMITTER: Townsend TA
PROVIDER: S-EPMC3128155 | biostudies-literature | 2011
REPOSITORIES: biostudies-literature
ACCESS DATA