Tumor necrosis factor-alpha is an endogenous inhibitor of Na+-K+-2Cl- cotransporter (NKCC2) isoform A in the thick ascending limb.
Ontology highlight
ABSTRACT: The effects of TNF gene deletion on renal Na(+)-K(+)-2Cl(-) cotransporter (NKCC2) expression and activity were determined. Outer medulla from TNF(-/-) mice exhibited a twofold increase in total NKCC2 protein expression compared with wild-type (WT) mice. This increase was not observed in TNF(-/-) mice treated with recombinant human TNF (hTNF) for 7 days. Administration of hTNF had no effect on total NKCC2 expression in WT mice. A fourfold increase in NKCC2A mRNA accumulation was observed in outer medulla from TNF(-/-) compared with WT mice; NKCC2F and NKCC2B mRNA accumulation was similar between genotypes. The increase in NKCC2A mRNA accumulation was attenuated when TNF(-/-) mice were treated with hTNF. Bumetanide-sensitive O(2) consumption, an in vitro correlate of NKCC2 activity, was 2.8 ± 0.2 nmol·min(-1)·mg(-1) in medullary thick ascending limb tubules from WT, representing ?40% of total O(2) consumption, whereas, in medullary thick ascending limb tubules from TNF(-/-) mice, it was 5.6 ± 0.3 nmol·min(-1)·mg(-1), representing ?60% of total O(2) consumption. Administration of hTNF to TNF(-/-) mice restored the bumetanide-sensitive component to ?30% of total O(2) consumption. Ambient urine osmolality was higher in TNF(-/-) compared with WT mice (2,072 ± 104 vs. 1,696 ± 153 mosmol/kgH(2)O, P < 0.05). The diluting ability of the kidney, assessed by measuring urine osmolality before and after 1 h of water loading also was greater in TNF(-/-) compared with WT mice (174 ± 38 and 465 ± 81 mosmol/kgH(2)O, respectively, P < 0.01). Collectively, these findings suggest that TNF plays a role as an endogenous inhibitor of NKCC2 expression and function.
SUBMITTER: Battula S
PROVIDER: S-EPMC3129887 | biostudies-literature | 2011 Jul
REPOSITORIES: biostudies-literature
ACCESS DATA