Unknown

Dataset Information

0

Engineering ligand-responsive RNA controllers in yeast through the assembly of RNase III tuning modules.


ABSTRACT: The programming of cellular networks to achieve new biological functions depends on the development of genetic tools that link the presence of a molecular signal to gene-regulatory activity. Recently, a set of engineered RNA controllers was described that enabled predictable tuning of gene expression in the yeast Saccharomyces cerevisiae through directed cleavage of transcripts by an RNase III enzyme, Rnt1p. Here, we describe a strategy for building a new class of RNA sensing-actuation devices based on direct integration of RNA aptamers into a region of the Rnt1p hairpin that modulates Rnt1p cleavage rates. We demonstrate that ligand binding to the integrated aptamer domain is associated with a structural change sufficient to inhibit Rnt1p processing. Three tuning strategies based on the incorporation of different functional modules into the Rnt1p switch platform were demonstrated to optimize switch dynamics and ligand responsiveness. We further demonstrated that these tuning modules can be implemented combinatorially in a predictable manner to further improve the regulatory response properties of the switch. The modularity and tunability of the Rnt1p switch platform will allow for rapid optimization and tailoring of this gene control device, thus providing a useful tool for the design of complex genetic networks in yeast.

SUBMITTER: Babiskin AH 

PROVIDER: S-EPMC3130268 | biostudies-literature | 2011 Jul

REPOSITORIES: biostudies-literature

altmetric image

Publications

Engineering ligand-responsive RNA controllers in yeast through the assembly of RNase III tuning modules.

Babiskin Andrew H AH   Smolke Christina D CD  

Nucleic acids research 20110225 12


The programming of cellular networks to achieve new biological functions depends on the development of genetic tools that link the presence of a molecular signal to gene-regulatory activity. Recently, a set of engineered RNA controllers was described that enabled predictable tuning of gene expression in the yeast Saccharomyces cerevisiae through directed cleavage of transcripts by an RNase III enzyme, Rnt1p. Here, we describe a strategy for building a new class of RNA sensing-actuation devices b  ...[more]

Similar Datasets

| S-EPMC3201855 | biostudies-other
| S-EPMC5473690 | biostudies-literature
| S-EPMC5041464 | biostudies-literature
2009-10-09 | GSE16784 | GEO
| S-EPMC2607070 | biostudies-literature
| S-EPMC9411606 | biostudies-literature
| S-EPMC8711130 | biostudies-literature
| S-EPMC4248846 | biostudies-literature
| S-EPMC1069626 | biostudies-literature
| S-EPMC3094065 | biostudies-literature