Unknown

Dataset Information

0

Early, H+-V-ATPase-dependent proton flux is necessary for consistent left-right patterning of non-mammalian vertebrates.


ABSTRACT: Biased left-right asymmetry is a fascinating and medically important phenomenon. We provide molecular genetic and physiological characterization of a novel, conserved, early, biophysical event that is crucial for correct asymmetry: H+ flux. A pharmacological screen implicated the H+-pump H+-V-ATPase in Xenopus asymmetry, where it acts upstream of early asymmetric markers. Immunohistochemistry revealed an actin-dependent asymmetry of H+-V-ATPase subunits during the first three cleavages. H+-flux across plasma membranes is also asymmetric at the four- and eight-cell stages, and this asymmetry requires H+-V-ATPase activity. Abolishing the asymmetry in H+ flux, using a dominant-negative subunit of the H+-V-ATPase or an ectopic H+ pump, randomized embryonic situs without causing any other defects. To understand the mechanism of action of H+-V-ATPase, we isolated its two physiological functions, cytoplasmic pH and membrane voltage (Vmem) regulation. Varying either pH or Vmem, independently of direct manipulation of H+-V-ATPase, caused disruptions of normal asymmetry, suggesting roles for both functions. V-ATPase inhibition also abolished the normal early localization of serotonin, functionally linking these two early asymmetry pathways. The involvement of H+-V-ATPase in asymmetry is conserved to chick and zebrafish. Inhibition of the H+-V-ATPase induces heterotaxia in both species; in chick, H+-V-ATPase activity is upstream of Shh; in fish, it is upstream of Kupffer's vesicle and Spaw expression. Our data implicate H+-V-ATPase activity in patterning the LR axis of vertebrates and reveal mechanisms upstream and downstream of its activity. We propose a pH- and Vmem-dependent model of the early physiology of LR patterning.

SUBMITTER: Adams DS 

PROVIDER: S-EPMC3136117 | biostudies-literature | 2006 May

REPOSITORIES: biostudies-literature

altmetric image

Publications

Early, H+-V-ATPase-dependent proton flux is necessary for consistent left-right patterning of non-mammalian vertebrates.

Adams Dany S DS   Robinson Kenneth R KR   Fukumoto Takahiro T   Yuan Shipeng S   Albertson R Craig RC   Yelick Pamela P   Kuo Lindsay L   McSweeney Megan M   Levin Michael M  

Development (Cambridge, England) 20060322 9


Biased left-right asymmetry is a fascinating and medically important phenomenon. We provide molecular genetic and physiological characterization of a novel, conserved, early, biophysical event that is crucial for correct asymmetry: H+ flux. A pharmacological screen implicated the H+-pump H+-V-ATPase in Xenopus asymmetry, where it acts upstream of early asymmetric markers. Immunohistochemistry revealed an actin-dependent asymmetry of H+-V-ATPase subunits during the first three cleavages. H+-flux  ...[more]

Similar Datasets

| S-EPMC3113753 | biostudies-literature
| S-EPMC5104509 | biostudies-literature
| S-EPMC3545537 | biostudies-literature
| S-EPMC3149648 | biostudies-literature
| S-EPMC6288385 | biostudies-literature
| S-EPMC3529356 | biostudies-literature
| S-EPMC6567806 | biostudies-literature
| S-EPMC3145729 | biostudies-literature
| S-EPMC409902 | biostudies-other
| S-EPMC2976797 | biostudies-literature