Unknown

Dataset Information

0

In silico investigation of conformational motions in superfamily 2 helicase proteins.


ABSTRACT: Helicases are motor proteins that play a central role in the metabolism of DNA and RNA in biological cells. Using the energy of ATP molecules, they are able to translocate along the nucleic acids and unwind their duplex structure. They have been extensively characterized in the past and grouped into superfamilies based on structural similarities and sequential motifs. However, their functional aspects and the mechanism of their operation are not yet well understood. Here, we consider three helicases from the major superfamily 2--Hef, Hel308 and XPD--and study their conformational dynamics by using coarse-grained relaxational elastic network models. Specifically, their responses to mechanical perturbations are analyzed. This enables us to identify robust and ordered conformational motions which may underlie the functional activity of these proteins. As we show, such motions are well-organized and have large amplitudes. Their possible roles in the processing of nucleic substrate are discussed.

SUBMITTER: Flechsig H 

PROVIDER: S-EPMC3139591 | biostudies-literature | 2011

REPOSITORIES: biostudies-literature

altmetric image

Publications

In silico investigation of conformational motions in superfamily 2 helicase proteins.

Flechsig Holger H   Popp Denny D   Mikhailov Alexander S AS  

PloS one 20110719 7


Helicases are motor proteins that play a central role in the metabolism of DNA and RNA in biological cells. Using the energy of ATP molecules, they are able to translocate along the nucleic acids and unwind their duplex structure. They have been extensively characterized in the past and grouped into superfamilies based on structural similarities and sequential motifs. However, their functional aspects and the mechanism of their operation are not yet well understood. Here, we consider three helic  ...[more]

Similar Datasets

| S-EPMC10082070 | biostudies-literature
| S-EPMC7796230 | biostudies-literature
| S-EPMC3018068 | biostudies-literature
| S-EPMC9292110 | biostudies-literature
| S-EPMC1567665 | biostudies-literature
| S-EPMC5379921 | biostudies-literature
| S-EPMC6151440 | biostudies-literature
| S-EPMC4334233 | biostudies-literature
| S-EPMC3727231 | biostudies-literature
| S-EPMC4078984 | biostudies-literature