Functional gene expression profile underlying methotrexate-induced senescence in human colon cancer cells.
Ontology highlight
ABSTRACT: Cellular functions accompanying establishment of premature senescence in methotrexate-treated human colon cancer C85 cells are deciphered in the present study from validated competitive expression microarray data, analyzed with the use of Ingenuity Pathways Analysis (IPA) software. The nitrosative/oxidative stress, inferred from upregulated expression of inducible nitric oxide synthase (iNOS) and mitochondrial dysfunction-associated genes, including monoamine oxidases MAOA and MAOB, ?-amyloid precursor protein (APP) and presenilin 1 (PSEN1), is identified as the main determinant of signaling pathways operating during senescence establishment. Activation of p53-signaling pathway is found associated with both apoptotic and autophagic components contributing to this process. Activation of nuclear factor ?B (NF-?B), resulting from interferon ? (IFN?), integrin, interleukin 1? (IL-1?), IL-4, IL-13, IL-22, Toll-like receptors (TLRs) 1, 2 and 3, growth factors and tumor necrosis factor (TNF) superfamily members signaling, is found to underpin inflammatory properties of senescent C85 cells. Upregulation of p21-activated kinases (PAK2 and PAK6), several Rho molecules and myosin regulatory light chains MYL12A and MYL12B, indicates acquisition of motility by those cells. Mitogen-activated protein kinase p38 MAPK ?, extracellular signal-regulated kinases ERK2 and ERK5, protein kinase B AKT1, as well as calcium, are identified as factors coordinating signaling pathways in senescent C85 cells.
SUBMITTER: Dabrowska M
PROVIDER: S-EPMC3156317 | biostudies-literature | 2011 Oct
REPOSITORIES: biostudies-literature
ACCESS DATA