Cooperative Cross-Talk between Neuroblastoma Subtypes Confers Resistance to Anaplastic Lymphoma Kinase Inhibition.
Ontology highlight
ABSTRACT: Neuroblastoma is a pediatric solid tumor that can be stratified into stroma-rich and stroma-poor histological subgroups. The stromal compartment of neuroblastoma is composed mostly of Schwann cells, and they play critical roles in the differentiation, survival, and angiogenic responses of tumor cells. In certain neuroblastoma cell lines, the coexistence of neuroblastic N-type and substrate-adherent S-type is frequently observed. One such cell line, SK-N-SH, harbors a F1174L oncogenic mutation in the anaplastic lymphoma kinase (ALK) gene. Treatment of SK-N-SH with an ALK chemical inhibitor, TAE684, resulted in the outgrowth of S-type cells that expressed the Schwann cell marker, S100?6. Nucleotide sequencing analysis of these TAE684-resistant (TR) sublines revealed the presence of the ALK F1174L mutation, suggesting their tumor origin, although ALK protein was not detected. Consistent with these findings, TR cells displayed approximately 9-fold higher IC(50) values than N-type cells. Also, unlike N-type cells, TR cells have readily detectable phosphorylated STAT3 but weaker phosphorylated AKT. Under coculture conditions, TR cells conferred survival to N-type cells against the apoptotic effect of TAE684. Cocultivation also greatly enhanced the overall phosphorylation of STAT3 and its transcriptional activity in N-type cells. Finally, conditioned medium from TR clones enhanced cell viability of N-type cells, and this effect was phosphatidylinositol 3-kinase dependent. Taken together, these results demonstrate the ability of tumor-derived S-type cells in protecting N-type cells against the apoptotic effect of an ALK kinase inhibitor through upregulating prosurvival signaling.
SUBMITTER: Yan X
PROVIDER: S-EPMC3161418 | biostudies-literature | 2011 May
REPOSITORIES: biostudies-literature
ACCESS DATA