Unknown

Dataset Information

0

Rational design of temperature-sensitive alleles using computational structure prediction.


ABSTRACT: Temperature-sensitive (ts) mutations are mutations that exhibit a mutant phenotype at high or low temperatures and a wild-type phenotype at normal temperature. Temperature-sensitive mutants are valuable tools for geneticists, particularly in the study of essential genes. However, finding ts mutations typically relies on generating and screening many thousands of mutations, which is an expensive and labor-intensive process. Here we describe an in silico method that uses Rosetta and machine learning techniques to predict a highly accurate "top 5" list of ts mutations given the structure of a protein of interest. Rosetta is a protein structure prediction and design code, used here to model and score how proteins accommodate point mutations with side-chain and backbone movements. We show that integrating Rosetta relax-derived features with sequence-based features results in accurate temperature-sensitive mutation predictions.

SUBMITTER: Poultney CS 

PROVIDER: S-EPMC3166291 | biostudies-literature | 2011

REPOSITORIES: biostudies-literature

altmetric image

Publications

Rational design of temperature-sensitive alleles using computational structure prediction.

Poultney Christopher S CS   Butterfoss Glenn L GL   Gutwein Michelle R MR   Drew Kevin K   Gresham David D   Gunsalus Kristin C KC   Shasha Dennis E DE   Bonneau Richard R  

PloS one 20110902 9


Temperature-sensitive (ts) mutations are mutations that exhibit a mutant phenotype at high or low temperatures and a wild-type phenotype at normal temperature. Temperature-sensitive mutants are valuable tools for geneticists, particularly in the study of essential genes. However, finding ts mutations typically relies on generating and screening many thousands of mutations, which is an expensive and labor-intensive process. Here we describe an in silico method that uses Rosetta and machine learni  ...[more]

Similar Datasets

| S-EPMC4086094 | biostudies-literature
| S-EPMC8449414 | biostudies-literature
| S-EPMC3112238 | biostudies-literature
| S-EPMC5039900 | biostudies-literature
| S-EPMC3464808 | biostudies-other
| S-EPMC2997364 | biostudies-literature
| S-EPMC6735812 | biostudies-literature
| S-EPMC9419585 | biostudies-literature
| S-EPMC10219489 | biostudies-literature
| S-EPMC2725513 | biostudies-other