Ontology highlight
ABSTRACT: Background
The use of induced pluripotent stem cells (iPSCs) for the functional replacement of damaged neurons and in vitro disease modeling is of great clinical relevance. Unfortunately, the capacity of iPSC lines to differentiate into neurons is highly variable, prompting the need for a reliable means of assessing the differentiation capacity of newly derived iPSC cell lines. Extended passaging is emerging as a method of ensuring faithful reprogramming. We adapted an established and efficient embryonic stem cell (ESC) neural induction protocol to test whether iPSCs (1) have the competence to give rise to functional neurons with similar efficiency as ESCs and (2) whether the extent of neural differentiation could be altered or enhanced by increased passaging.Results
Our gene expression and morphological analyses revealed that neural conversion was temporally delayed in iPSC lines and some iPSC lines did not properly form embryoid bodies during the first stage of differentiation. Notably, these deficits were corrected by continual passaging in an iPSC clone. iPSCs with greater than 20 passages (late-passage iPSCs) expressed higher expression levels of pluripotency markers and formed larger embryoid bodies than iPSCs with fewer than 10 passages (early-passage iPSCs). Moreover, late-passage iPSCs started to express neural marker genes sooner than early-passage iPSCs after the initiation of neural induction. Furthermore, late-passage iPSC-derived neurons exhibited notably greater excitability and larger voltage-gated currents than early-passage iPSC-derived neurons, although these cells were morphologically indistinguishable.Conclusions
These findings strongly suggest that the efficiency neuronal conversion depends on the complete reprogramming of iPSCs via extensive passaging.
SUBMITTER: Koehler KR
PROVIDER: S-EPMC3167757 | biostudies-literature | 2011 Aug
REPOSITORIES: biostudies-literature
Koehler Karl R KR Tropel Philippe P Theile Jonathan W JW Kondo Takako T Cummins Theodore R TR Viville Stéphane S Hashino Eri E
BMC neuroscience 20110810
<h4>Background</h4>The use of induced pluripotent stem cells (iPSCs) for the functional replacement of damaged neurons and in vitro disease modeling is of great clinical relevance. Unfortunately, the capacity of iPSC lines to differentiate into neurons is highly variable, prompting the need for a reliable means of assessing the differentiation capacity of newly derived iPSC cell lines. Extended passaging is emerging as a method of ensuring faithful reprogramming. We adapted an established and ef ...[more]