Unknown

Dataset Information

0

Horizontal gene transfer facilitated the evolution of plant parasitic mechanisms in the oomycetes.


ABSTRACT: Horizontal gene transfer (HGT) can radically alter the genomes of microorganisms, providing the capacity to adapt to new lifestyles, environments, and hosts. However, the extent of HGT between eukaryotes is unclear. Using whole-genome, gene-by-gene phylogenetic analysis we demonstrate an extensive pattern of cross-kingdom HGT between fungi and oomycetes. Comparative genomics, including the de novo genome sequence of Hyphochytrium catenoides, a free-living sister of the oomycetes, shows that these transfers largely converge within the radiation of oomycetes that colonize plant tissues. The repertoire of HGTs includes a large number of putatively secreted proteins; for example, 7.6% of the secreted proteome of the sudden oak death parasite Phytophthora ramorum has been acquired from fungi by HGT. Transfers include gene products with the capacity to break down plant cell walls and acquire sugars, nucleic acids, nitrogen, and phosphate sources from the environment. Predicted HGTs also include proteins implicated in resisting plant defense mechanisms and effector proteins for attacking plant cells. These data are consistent with the hypothesis that some oomycetes became successful plant parasites by multiple acquisitions of genes from fungi.

SUBMITTER: Richards TA 

PROVIDER: S-EPMC3174590 | biostudies-literature | 2011 Sep

REPOSITORIES: biostudies-literature

altmetric image

Publications

Horizontal gene transfer facilitated the evolution of plant parasitic mechanisms in the oomycetes.

Richards Thomas A TA   Soanes Darren M DM   Jones Meredith D M MD   Vasieva Olga O   Leonard Guy G   Paszkiewicz Konrad K   Foster Peter G PG   Hall Neil N   Talbot Nicholas J NJ  

Proceedings of the National Academy of Sciences of the United States of America 20110830 37


Horizontal gene transfer (HGT) can radically alter the genomes of microorganisms, providing the capacity to adapt to new lifestyles, environments, and hosts. However, the extent of HGT between eukaryotes is unclear. Using whole-genome, gene-by-gene phylogenetic analysis we demonstrate an extensive pattern of cross-kingdom HGT between fungi and oomycetes. Comparative genomics, including the de novo genome sequence of Hyphochytrium catenoides, a free-living sister of the oomycetes, shows that thes  ...[more]

Similar Datasets

| S-EPMC4447370 | biostudies-literature
| S-EPMC3460754 | biostudies-literature
| S-EPMC3893544 | biostudies-literature
| S-EPMC6420030 | biostudies-literature
| PRJEB21576 | ENA
| S-EPMC2644373 | biostudies-literature
| S-EPMC4455057 | biostudies-literature
| S-EPMC8207144 | biostudies-literature
| S-EPMC7958396 | biostudies-literature
| S-EPMC115226 | biostudies-literature