Project description:Horizontal gene transfer (HGT) can radically alter the genomes of microorganisms, providing the capacity to adapt to new lifestyles, environments, and hosts. However, the extent of HGT between eukaryotes is unclear. Using whole-genome, gene-by-gene phylogenetic analysis we demonstrate an extensive pattern of cross-kingdom HGT between fungi and oomycetes. Comparative genomics, including the de novo genome sequence of Hyphochytrium catenoides, a free-living sister of the oomycetes, shows that these transfers largely converge within the radiation of oomycetes that colonize plant tissues. The repertoire of HGTs includes a large number of putatively secreted proteins; for example, 7.6% of the secreted proteome of the sudden oak death parasite Phytophthora ramorum has been acquired from fungi by HGT. Transfers include gene products with the capacity to break down plant cell walls and acquire sugars, nucleic acids, nitrogen, and phosphate sources from the environment. Predicted HGTs also include proteins implicated in resisting plant defense mechanisms and effector proteins for attacking plant cells. These data are consistent with the hypothesis that some oomycetes became successful plant parasites by multiple acquisitions of genes from fungi.
Project description:This is a contribution to the history of scientific advance in the past 70 years concerning the identification of genetic information, its molecular structure, the identification of its functions and the molecular mechanisms of its evolution. Particular attention is thereby given to horizontal gene transfer among microorganisms, as well as to biosafety considerations with regard to beneficial applications of acquired scientific knowledge.
Project description:We evolved E. coli populations conjugating to DNA donors of different E. coli strains to novel nutrients to investigate the effects of horizontal gene transfer in adaptation.
Project description:BackgroundGenomes of Methanosarcina spp. are among the largest archaeal genomes. One suggested reason for that is massive horizontal gene transfer (HGT) from bacteria. Genes of bacterial origin may be involved in the central metabolism and solute transport, in particular sugar synthesis, sulfur metabolism, phosphate metabolism, DNA repair, transport of small molecules etc. Horizontally transferred (HT) genes are considered to play the key role in the ability of Methanosarcina spp. to inhabit diverse environments. At the moment, genomes of three Methanosarcina spp. have been sequenced, and while these genomes vary in length and number of protein-coding genes, they all have been shown to accumulate HT genes. However, previous estimates had been made when fewer archaeal genomes were known. Moreover, several Methanosarcinaceae genomes from other genera have been sequenced recently. Here, we revise the census of genes of bacterial origin in Methanosarcinaceae.ResultsAbout 5% of Methanosarcina genes have been shown to be horizontally transferred from various bacterial groups to the last common ancestor either of Methanosarcinaceae, or Methanosarcina, or later in the evolution. Simulation of the composition of the NCBI protein non-redundant database for different years demonstrates that the estimates of the HGT rate have decreased drastically since 2002, the year of publication of the first Methanosarcina genome. The phylogenetic distribution of HT gene donors is non-uniform. Most HT genes were transferred from Firmicutes and Proteobacteria, while no HGT events from Actinobacteria to the common ancestor of Methanosarcinaceae were found. About 50% of HT genes are involved in metabolism. Horizontal transfer of transcription factors is not common, while 46% of horizontally transferred genes have demonstrated differential expression in a variety of conditions. HGT of complete operons is relatively infrequent and half of HT genes do not belong to operons.ConclusionsWhile genes of bacterial origin are still more frequent in Methanosarcinaceae than in other Archaea, most HGT events described earlier as Methanosarcina-specific seem to have occurred before the divergence of Methanosarcinaceae. Genes horizontally transferred from bacteria to archaea neither tend to be transferred with their regulators, nor in long operons.
Project description:Horizontal gene transfer (HGT) is an important factor in bacterial evolution that can act across species boundaries. Yet, we know little about rate and genomic targets of cross-lineage gene transfer and about its effects on the recipient organism's physiology and fitness. Here, we address these questions in a parallel evolution experiment with two Bacillus subtilis lineages of 7% sequence divergence. We observe rapid evolution of hybrid organisms: gene transfer swaps ∼12% of the core genome in just 200 generations, and 60% of core genes are replaced in at least one population. By genomics, transcriptomics, fitness assays, and statistical modeling, we show that transfer generates adaptive evolution and functional alterations in hybrids. Specifically, our experiments reveal a strong, repeatable fitness increase of evolved populations in the stationary growth phase. By genomic analysis of the transfer statistics across replicate populations, we infer that selection on HGT has a broad genetic basis: 40% of the observed transfers are adaptive. At the level of functional gene networks, we find signatures of negative, positive, and epistatic selection, consistent with hybrid incompatibilities and adaptive evolution of network functions. Our results suggest that gene transfer navigates a complex cross-lineage fitness landscape, bridging epistatic barriers along multiple high-fitness paths.
Project description:BackgroundGene fusions can be used as tools for functional prediction and also as evolutionary markers. Fused genes often show a scattered phyletic distribution, which suggests a role for processes other than vertical inheritance in their evolution.ResultsThe evolutionary history of gene fusions was studied by phylogenetic analysis of the domains in the fused proteins and the orthologous domains that form stand-alone proteins. Clustering of fusion components from phylogenetically distant species was construed as evidence of dissemination of the fused genes by horizontal transfer. Of the 51 examined gene fusions that are represented in at least two of the three primary kingdoms (Bacteria, Archaea and Eukaryota), 31 were most probably disseminated by cross-kingdom horizontal gene transfer, whereas 14 appeared to have evolved independently in different kingdoms and two were probably inherited from the common ancestor of modern life forms. On many occasions, the evolutionary scenario also involves one or more secondary fissions of the fusion gene. For approximately half of the fusions, stand-alone forms of the fusion components are encoded by juxtaposed genes, which are known or predicted to belong to the same operon in some of the prokaryotic genomes. This indicates that evolution of gene fusions often, if not always, involves an intermediate stage, during which the future fusion components exist as juxtaposed and co-regulated, but still distinct, genes within operons.ConclusionThese findings suggest a major role for horizontal transfer of gene fusions in the evolution of protein-domain architectures, but also indicate that independent fusions of the same pair of domains in distant species is not uncommon, which suggests positive selection for the multidomain architectures.
Project description:Prolines cause ribosomes to stall during translation due to their rigid structure. This phenomenon occurs in all domains of life and is exacerbated at polyproline motifs. Such stalling can be eased by the elongation factor P (EF-P) in bacteria. We discovered a potential connection between the loss of ancestral EF-P, the appearance of horizontally transferred EF-P variants, and genomic signs of EF-P dysfunction. Horizontal transfer of the efp gene has occurred several times among bacteria and is associated with the loss of highly conserved polyproline motifs. In this study, we pinpoint cases of horizontal EF-P transfer among a diverse set of bacteria and examine genomic features associated with these events in the phyla Thermotogota and Planctomycetes. In these phyla, horizontal EF-P transfer is also associated with the loss of entire polyproline motif-containing proteins, whose expression is likely dependent on EF-P. In particular, three proteases (Lon, ClpC, and FtsH) and three tRNA synthetases (ValS, IleS1, and IleS2) appear highly sensitive to EF-P transfer. The conserved polyproline motifs within these proteins all reside within close proximity to ATP-binding-regions, some of which are crucial for their function. Our work shows that an ancient EF-P dysfunction has left genomic traces that persist to this day, although it remains unclear whether this dysfunction was strictly due to loss of ancestral EF-P or was related to the appearance of an exogenous variant. The latter possibility would imply that the process of "domesticating" a horizontally transferred efp gene can perturb the overall function of EF-P.
Project description:Bacteria frequently exhibit cooperative behaviors but cooperative strains are vulnerable to invasion by cheater strains that reap the benefits of cooperation but do not perform the cooperative behavior themselves. Bacterial genomes often contain mobile genetic elements such as plasmids. When a gene for cooperative behavior exists on a plasmid, cheaters can be forced to cooperate by infection with this plasmid, rescuing cooperation in a population in which mutation or migration has allowed cheaters to arise. Here we introduce a second plasmid that does not code for cooperation and show that the social dilemma repeats itself at the plasmid level in both within-patch and metapopulation scenarios, and under various scenarios of plasmid incompatibility. Our results suggest that although plasmid carriage of cooperative genes can provide a transient defense against defection in structured environments, plasmid and chromosomal defection remain the only stable strategies in an unstructured environment. We discuss our results in the light of recent bioinformatic evidence that cooperative genes are overrepresented on mobile elements.
Project description:Microbial communities in the world ocean are affected strongly by oceanic circulation, creating characteristic marine biomes. The high connectivity of most of the ocean makes it difficult to disentangle selective retention of colonizing genotypes (with traits suited to biome specific conditions) from evolutionary selection, which would act on founder genotypes over time. The Arctic Ocean is exceptional with limited exchange with other oceans and ice covered since the last ice age. To test whether Arctic microalgal lineages evolved apart from algae in the global ocean, we sequenced four lineages of microalgae isolated from Arctic waters and sea ice. Here we show convergent evolution and highlight geographically limited HGT as an ecological adaptive force in the form of PFAM complements and horizontal acquisition of key adaptive genes. Notably, ice-binding proteins were acquired and horizontally transferred among Arctic strains. A comparison with Tara Oceans metagenomes and metatranscriptomes confirmed mostly Arctic distributions of these IBPs. The phylogeny of Arctic-specific genes indicated that these events were independent of bacterial-sourced HGTs in Antarctic Southern Ocean microalgae.
Project description:Bacteriophage genomic evolution has been largely characterized by rampant, promiscuous horizontal gene transfer involving both homologous and nonhomologous source DNA. This pattern has emerged through study of the tailed double-stranded DNA (dsDNA) phages and is based upon a sparse sampling of the enormous diversity of these phages. The single-stranded DNA phages of the family Microviridae, including phiX174, appear to evolve through qualitatively different mechanisms, possibly as result of their strictly lytic lifestyle and small genome size. However, this apparent difference could reflect merely a dearth of relevant data. We sought to characterize the forces that contributed to the molecular evolution of the Microviridae and to examine the genetic structure of this single family of bacteriophage by sequencing the genomes of microvirid phage isolated on a single bacterial host. Microvirids comprised 3.5% of the detectable phage in our environmental samples, and sequencing yielded 42 new microvirid genomes. Phylogenetic analysis of the genes contained in these and five previously described microvirid phages identified three distinct clades and revealed at least two horizontal transfer events between clades. All members of one clade have a block of five putative genes that are not present in any member of the other two clades. Our data indicate that horizontal transfer does contribute to the evolution of the microvirids but is both quantitatively and qualitatively different from what has been observed for the dsDNA phages.