Unknown

Dataset Information

0

Deletion of alternative pathways for reductant recycling in Thermococcus kodakarensis increases hydrogen production.


ABSTRACT: Hydrogen (H₂) production by Thermococcus kodakarensis compares very favourably with the levels reported for the most productive algal, fungal and bacterial systems. T. kodakarensis can also consume H₂ and is predicted to use several alternative pathways to recycle reduced cofactors, some of which may compete with H₂ production for reductant disposal. To explore the reductant flux and possible competition for H₂ production in vivo, T. kodakarensis TS517 was mutated to precisely delete each of the alternative pathways of reductant disposal, H₂ production and consumption. The results obtained establish that H₂ is generated predominantly by the membrane-bound hydrogenase complex (Mbh), confirm the essential role of the SurR (TK1086p) regulator in vivo, delineate the roles of sulfur (S°) regulon proteins and demonstrate that preventing H₂ consumption results in a substantial net increase in H₂ production. Constitutive expression of TK1086 (surR) from a replicative plasmid restored the ability of T. kodakarensis TS1101 (ΔTK1086) to grow in the absence of S° and stimulated H₂ production, revealing a second mechanism to increase H₂ production. Transformation of T. kodakarensis TS1101 with plasmids that express SurR variants constructed to direct the constitutive synthesis of the Mbh complex and prevent expression of the S° regulon was only possible in the absence of S° and, under these conditions, the transformants exhibited wild-type growth and H₂ production. With S° present, they grew slower but synthesized more H₂ per unit biomass than T. kodakarensis TS517.

SUBMITTER: Santangelo TJ 

PROVIDER: S-EPMC3179246 | biostudies-literature | 2011 Aug

REPOSITORIES: biostudies-literature

altmetric image

Publications

Deletion of alternative pathways for reductant recycling in Thermococcus kodakarensis increases hydrogen production.

Santangelo Thomas J TJ   Cuboňová L'ubomíra L   Reeve John N JN  

Molecular microbiology 20110713 4


Hydrogen (H₂) production by Thermococcus kodakarensis compares very favourably with the levels reported for the most productive algal, fungal and bacterial systems. T. kodakarensis can also consume H₂ and is predicted to use several alternative pathways to recycle reduced cofactors, some of which may compete with H₂ production for reductant disposal. To explore the reductant flux and possible competition for H₂ production in vivo, T. kodakarensis TS517 was mutated to precisely delete each of the  ...[more]

Similar Datasets

| S-EPMC5514669 | biostudies-literature
| S-EPMC4549637 | biostudies-literature
| S-EPMC3736136 | biostudies-literature
| PRJNA1022152 | ENA
| PRJNA1154289 | ENA
| PRJNA215074 | ENA
| PRJNA292671 | ENA
| PRJNA292662 | ENA
| PRJNA35431 | ENA
| PRJNA937301 | ENA