Unknown

Dataset Information

0

Type III IFN receptor expression and functional characterisation in the pteropid bat, Pteropus alecto.


ABSTRACT: Bats are rich reservoir hosts for a variety of viruses, many of which are capable of spillover to other susceptible mammals with lethal consequences. The ability of bats to remain asymptomatic to viral infection may be due to the rapid control of viral replication very early in the immune response through innate antiviral mechanisms. Type I and III interferons (IFNs) represent the first line of defence against viral infection in mammals, with both families of IFNs present in pteropid bats. To obtain further insight into the type III IFN system in bats, we describe the characterization of the type III IFN receptor (IFN?R) in the black flying fox, P. alecto with the characterization of IFN?R1 and IL10R2 genes that make up the type III IFN receptor complex. The bat IFN?R complex has a wide tissue distribution and at the cellular level, both epithelial and immune cells are responsive to IFN-? treatment. Furthermore, we demonstrate that the bat IFN?R1 chain acts as a functional receptor. To our knowledge, this report represents the first description of an IFN receptor in any species of bat. The responsiveness of bat cells to IFN-? support a role for the type III IFN system by epithelial and immune cells in bats.

SUBMITTER: Zhou P 

PROVIDER: S-EPMC3181264 | biostudies-literature | 2011

REPOSITORIES: biostudies-literature

altmetric image

Publications

Type III IFN receptor expression and functional characterisation in the pteropid bat, Pteropus alecto.

Zhou Peng P   Cowled Chris C   Marsh Glenn A GA   Shi Zhengli Z   Wang Lin-Fa LF   Baker Michelle L ML  

PloS one 20110927 9


Bats are rich reservoir hosts for a variety of viruses, many of which are capable of spillover to other susceptible mammals with lethal consequences. The ability of bats to remain asymptomatic to viral infection may be due to the rapid control of viral replication very early in the immune response through innate antiviral mechanisms. Type I and III interferons (IFNs) represent the first line of defence against viral infection in mammals, with both families of IFNs present in pteropid bats. To ob  ...[more]

Similar Datasets

| S-EPMC7103211 | biostudies-literature
| S-EPMC7736909 | biostudies-literature
| S-EPMC5437515 | biostudies-literature
| S-EPMC5121612 | biostudies-literature
| S-EPMC5549907 | biostudies-literature
| S-EPMC2788226 | biostudies-literature
| S-EPMC4634287 | biostudies-other
| S-EPMC7103217 | biostudies-literature
| S-EPMC5146944 | biostudies-literature
2014-11-05 | PXD001165 | Pride