Unknown

Dataset Information

0

Stepwise unfolding of a ? barrel protein by the AAA+ ClpXP protease.


ABSTRACT: In the AAA+ ClpXP protease, ClpX uses the energy of ATP binding and hydrolysis to unfold proteins before translocating them into ClpP for degradation. For proteins with C-terminal ssrA tags, ClpXP pulls on the tag to initiate unfolding and subsequent degradation. Here, we demonstrate that an initial step in ClpXP unfolding of the 11-stranded ? barrel of superfolder GFP-ssrA involves extraction of the C-terminal ? strand. The resulting 10-stranded intermediate is populated at low ATP concentrations, which stall ClpXP unfolding, and at high ATP concentrations, which support robust degradation. To determine if stable unfolding intermediates cause low-ATP stalling, we designed and characterized circularly permuted GFP variants. Notably, stalling was observed for a variant that formed a stable 10-stranded intermediate but not for one in which this intermediate was unstable. A stepwise degradation model in which the rates of terminal-strand extraction, strand refolding or recapture, and unfolding of the 10-stranded intermediate all depend on the rate of ATP hydrolysis by ClpXP accounts for the observed changes in degradation kinetics over a broad range of ATP concentrations. Our results suggest that the presence or absence of unfolding intermediates will play important roles in determining whether forced enzymatic unfolding requires a minimum rate of ATP hydrolysis.

SUBMITTER: Nager AR 

PROVIDER: S-EPMC3184388 | biostudies-literature | 2011 Oct

REPOSITORIES: biostudies-literature

altmetric image

Publications

Stepwise unfolding of a β barrel protein by the AAA+ ClpXP protease.

Nager Andrew R AR   Baker Tania A TA   Sauer Robert T RT  

Journal of molecular biology 20110729 1


In the AAA+ ClpXP protease, ClpX uses the energy of ATP binding and hydrolysis to unfold proteins before translocating them into ClpP for degradation. For proteins with C-terminal ssrA tags, ClpXP pulls on the tag to initiate unfolding and subsequent degradation. Here, we demonstrate that an initial step in ClpXP unfolding of the 11-stranded β barrel of superfolder GFP-ssrA involves extraction of the C-terminal β strand. The resulting 10-stranded intermediate is populated at low ATP concentratio  ...[more]

Similar Datasets

| S-EPMC7668067 | biostudies-literature
| S-EPMC7529148 | biostudies-literature
| S-EPMC2773733 | biostudies-literature
| S-EPMC7647994 | biostudies-literature
| S-EPMC5467750 | biostudies-literature
| S-EPMC3209554 | biostudies-literature
| S-EPMC4490964 | biostudies-literature
| S-EPMC7226468 | biostudies-literature
| S-EPMC6382783 | biostudies-literature
| S-EPMC9963277 | biostudies-literature