Unknown

Dataset Information

0

Role of ZBP-89 in human globin gene regulation and erythroid differentiation.


ABSTRACT: The molecular mechanisms underlying erythroid-specific gene regulation remain incompletely understood. Closely spaced binding sites for GATA, NF-E2/maf, and CACCC interacting transcription factors play functionally important roles in globin and other erythroid-specific gene expression. We and others recently identified the CACCC-binding transcription factor ZBP-89 as a novel GATA-1 and NF-E2/mafK interacting partner. Here, we examined the role of ZBP-89 in human globin gene regulation and erythroid maturation using a primary CD34(+) cell ex vivo differentiation system. We show that ZBP-89 protein levels rise dramatically during human erythroid differentiation and that ZBP-89 occupies key cis-regulatory elements within the globin and other erythroid gene loci. ZBP-89 binding correlates strongly with RNA Pol II occupancy, active histone marks, and high-level gene expression. ZBP-89 physically associates with the histone acetyltransferases p300 and Gcn5/Trrap, and occupies common sites with Gcn5 within the human globin loci. Lentiviral short hairpin RNAs knockdown of ZBP-89 results in reduced Gcn5 occupancy, decreased acetylated histone 3 levels, lower globin and erythroid-specific gene expression, and impaired erythroid maturation. Addition of the histone deacetylase inhibitor valproic acid partially reverses the reduced globin gene expression. These findings reveal an activating role for ZBP-89 in human globin gene regulation and erythroid differentiation.

SUBMITTER: Woo AJ 

PROVIDER: S-EPMC3186340 | biostudies-literature | 2011 Sep

REPOSITORIES: biostudies-literature

altmetric image

Publications

Role of ZBP-89 in human globin gene regulation and erythroid differentiation.

Woo Andrew J AJ   Kim Jonghwan J   Xu Jian J   Huang Hui H   Cantor Alan B AB  

Blood 20110809 13


The molecular mechanisms underlying erythroid-specific gene regulation remain incompletely understood. Closely spaced binding sites for GATA, NF-E2/maf, and CACCC interacting transcription factors play functionally important roles in globin and other erythroid-specific gene expression. We and others recently identified the CACCC-binding transcription factor ZBP-89 as a novel GATA-1 and NF-E2/mafK interacting partner. Here, we examined the role of ZBP-89 in human globin gene regulation and erythr  ...[more]

Similar Datasets

| S-EPMC6712527 | biostudies-literature
2011-08-02 | GSE31092 | GEO
| S-EPMC3145782 | biostudies-literature
2011-08-01 | E-GEOD-31092 | biostudies-arrayexpress
| S-EPMC4622718 | biostudies-literature
| S-EPMC2293107 | biostudies-literature
| S-EPMC3602204 | biostudies-literature
| S-EPMC1168829 | biostudies-literature
| S-EPMC2997688 | biostudies-literature
| S-EPMC1390687 | biostudies-literature