A computational model of cytosolic and mitochondrial [ca] in paced rat ventricular myocytes.
Ontology highlight
ABSTRACT: We carried out a series of experiment demonstrating the role of mitochondria in the cytosolic and mitochondrial Ca(2+) transients and compared the results with those from computer simulation. In rat ventricular myocytes, increasing the rate of stimulation (1~3 Hz) made both the diastolic and systolic [Ca(2+)] bigger in mitochondria as well as in cytosol. As L-type Ca(2+) channel has key influence on the amplitude of Ca(2+)-induced Ca(2+) release, the relation between stimulus frequency and the amplitude of Ca(2+) transients was examined under the low density (1/10 of control) of L-type Ca(2+) channel in model simulation, where the relation was reversed. In experiment, block of Ca(2+) uniporter on mitochondrial inner membrane significantly reduced the amplitude of mitochondrial Ca(2+) transients, while it failed to affect the cytosolic Ca(2+) transients. In computer simulation, the amplitude of cytosolic Ca(2+) transients was not affected by removal of Ca(2+) uniporter. The application of carbonyl cyanide 4-(trifluoromethoxy) phenylhydrazone (FCCP) known as a protonophore on mitochondrial membrane to rat ventricular myocytes gradually increased the diastolic [Ca(2+)] in cytosol and eventually abolished the Ca(2+) transients, which was similarly reproduced in computer simulation. The model study suggests that the relative contribution of L-type Ca(2+) channel to total transsarcolemmal Ca(2+) flux could determine whether the cytosolic Ca(2+) transients become bigger or smaller with higher stimulus frequency. The present study also suggests that cytosolic Ca(2+) affects mitochondrial Ca(2+) in a beat-to-beat manner, however, removal of Ca(2+) influx mechanism into mitochondria does not affect the amplitude of cytosolic Ca(2+) transients.
SUBMITTER: Youm JB
PROVIDER: S-EPMC3186923 | biostudies-literature |
REPOSITORIES: biostudies-literature
ACCESS DATA