Interendothelial claudin-5 expression depends on cerebral endothelial cell-matrix adhesion by ?(1)-integrins.
Ontology highlight
ABSTRACT: The hypothesis tested by these studies states that in addition to interendothelial cell tight junction proteins, matrix adhesion by ?(1)-integrin receptors expressed by endothelial cells have an important role in maintaining the cerebral microvessel permeability barrier. Primary brain endothelial cells from C57 BL/6 mice were incubated with ?(1)-integrin function-blocking antibody (Ha2/5) or isotype control and the impacts on claudin-5 expression and microvessel permeability were quantified. Both flow cytometry and immunofluorescence studies demonstrated that the interendothelial claudin-5 expression by confluent endothelial cells was significantly decreased in a time-dependent manner by Ha2/5 exposure relative to isotype. Furthermore, to assess the barrier properties, transendothelial electrical resistance and permeability measurements of the monolayer, and stereotaxic injection into the striatum of mice were performed. Ha2/5 incubation reduced the resistance of endothelial cell monolayers significantly, and significantly increased permeability to 40 and 150 ?kDa dextrans. Ha2/5 injection into mouse striatum produced significantly greater IgG extravasation than the isotype or the control injections. This study demonstrates that blockade of ?(1)-integrin function changes interendothelial claudin-5 expression and increases microvessel permeability. Hence, endothelial cell-matrix interactions via ?(1)-integrin directly affect interendothelial cell tight junction claudin-5 expression and brain microvascular permeability.
SUBMITTER: Osada T
PROVIDER: S-EPMC3208159 | biostudies-literature | 2011 Oct
REPOSITORIES: biostudies-literature
ACCESS DATA