Absolute requirement for STAT3 function in small-intestine crypt stem cell survival.
Ontology highlight
ABSTRACT: The transcription factor signal transducer and activator of transcription 3 (STAT3) is frequently activated in human cancers. Interestingly, STAT3 also maintains the pluripotency and self-renewal of murine embryonic stem cells, and several tissue stem cell types. To investigate whether STAT3 also maintains the small-intestine crypt stem cell, we conditionally inactivated a Floxed Stat3 allele (Stat3(fl)) in murine small-intestine crypt stem cells. Following Cre recombinase expression, apoptosis increased in Stat3(fl/-) experimental crypts relative to Stat3(wt/-) controls before declining. Control Stat3(wt/-) mice carrying a Flox-STOP LacZ reporter transgene stably expressed LacZ after Cre induction. In contrast, Stat3(fl/-) intestine LacZ expression initially increased modestly, before declining to background levels. Quantitative PCRs revealed a similar transient in recombined Stat3(fl) allele levels. Long-term bromodeoxyuridine labelling directly demonstrated that functional STAT3 is required for +4 to +6 region label-retaining small-intestine stem cell survival. Rapid clearance of recombined Stat3(fl/-) cells involves apoptosis potentially induced by elevated c-Myc in non-recombined cells and involves elevated p53 expression and caspase 3 activation. Intriguingly, Stat3(fl/-) intestine recombination triggered dramatically upregulated polycomb transcriptional repressor Bmi1 - potentially accelerating recombined crypt repopulation. In summary, STAT3 activity is absolutely required for small-intestine crypt stem cell survival at both the +4 to +6 label-retaining and crypt base columnar cell locations.
SUBMITTER: Matthews JR
PROVIDER: S-EPMC3214915 | biostudies-literature |
REPOSITORIES: biostudies-literature
ACCESS DATA