Ontology highlight
ABSTRACT: Objectives
In order to identify the possibility of striped bitterling (SB) (Acheilognathus yamatsutae) being used as a test species for estrogenic endocrine disrupting chemicals (EEDCs), we carried out the cloning and sequence characterization of the estrogen receptor (ER).Methods
The ER from a striped bitterling was obtained by reverse transcriptase-polymerase chain reaction (RT-PCR), 5'- and 3'-rapid amplification of cDNA ends (5'-RACE and 3'-RACE) and T-vector cloning. The expression of ER mRNA was also analyzed in six tissues (brain, liver, kidney, gill, gonad, and intestines) by real-time PCR.Results
We obtained an ER from the striped bitterling. The SB ER cDNA was 2189 base pairs (bp) in length and contained a 1707 bp open reading frame that encoded 568 amino acid residues. The SB ER amino acid sequence clustered in a monophyletic group with the ERα of other fish, and was more closely related to zebrafish ERα (88% identity) than to the ERα of other fish. The SB ER cDNA was divided into A/B, C, D, E and F domains. The SB ER has conserved important sequences for ER functions, such as the DNA binding domain (D domain), which are consistent with those of other teleosts.Conclusions
The ER of the striped bitterling could provide basic information in toxicological studies of EEDCs in the striped bitterling.
SUBMITTER: Kim JG
PROVIDER: S-EPMC3214976 | biostudies-literature | 2011
REPOSITORIES: biostudies-literature
Kim Jong Geuk JG Kim Ha Ryong HR Park Yong Joo YJ Chung Kyu Hyuck KH Oh Seung Min SM
Environmental health and toxicology 20110328
<h4>Objectives</h4>In order to identify the possibility of striped bitterling (SB) (Acheilognathus yamatsutae) being used as a test species for estrogenic endocrine disrupting chemicals (EEDCs), we carried out the cloning and sequence characterization of the estrogen receptor (ER).<h4>Methods</h4>The ER from a striped bitterling was obtained by reverse transcriptase-polymerase chain reaction (RT-PCR), 5'- and 3'-rapid amplification of cDNA ends (5'-RACE and 3'-RACE) and T-vector cloning. The exp ...[more]