Unknown

Dataset Information

0

A historical and proteomic analysis of botulinum neurotoxin type/G.


ABSTRACT: BACKGROUND: Clostridium botulinum is the taxonomic designation for at least six diverse species that produce botulinum neurotoxins (BoNTs). There are seven known serotypes of BoNTs (/A through/G), all of which are potent toxins classified as category A bioterrorism agents. BoNT/G is the least studied of the seven serotypes. In an effort to further characterize the holotoxin and neurotoxin-associated proteins (NAPs), we conducted an in silico and proteomic analysis of commercial BoNT/G complex. We describe the relative quantification of the proteins present in the/G complex and confirm our ability to detect the toxin activity in vitro. In addition, we review previous literature to provide a complete description of the BoNT/G complex. RESULTS: An in-depth comparison of protein sequences indicated that BoNT/G shares the most sequence similarity with the/B serotype. A temperature-modified Endopep-MS activity assay was successful in the detection of BoNT/G activity. Gel electrophoresis and in gel digestions, followed by MS/MS analysis of/G complex, revealed the presence of four proteins in the complexes: neurotoxin (BoNT) and three NAPs--nontoxic-nonhemagglutinin (NTNH) and two hemagglutinins (HA70 and HA17). Rapid high-temperature in-solution tryptic digestions, coupled with MS/MS analysis, generated higher than previously reported sequence coverages for all proteins associated with the complex: BoNT 66%, NTNH 57%, HA70 91%, and HA17 99%. Label-free relative quantification determined that the complex contains 30% BoNT, 38% NTNH, 28% HA70, and 4% HA17 by weight comparison and 17% BoNT, 23% NTNH, 42% HA70, and 17% HA17 by molecular comparison. CONCLUSIONS: The in silico protein sequence comparisons established that the/G complex is phenetically related to the other six serotypes of C. botulinum. Proteomic analyses and Endopep-MS confirmed the presence of BoNT and NAPs, along with the activity of the commercial/G complex. The use of data-independent MS(E) data analysis, coupled to label-free quantification software, suggested that the weight ratio BoNT:NAPs is 1:3, whereas the molar ratio of BoNT:NTNH:HA70:HA17 is 1:1:2:1, within the BoNT/G progenitor toxin.

SUBMITTER: Terilli RR 

PROVIDER: S-EPMC3215672 | biostudies-literature | 2011

REPOSITORIES: biostudies-literature

altmetric image

Publications

A historical and proteomic analysis of botulinum neurotoxin type/G.

Terilli Rebecca R RR   Moura Hercules H   Woolfitt Adrian R AR   Rees Jon J   Schieltz David M DM   Barr John R JR  

BMC microbiology 20111018


<h4>Background</h4>Clostridium botulinum is the taxonomic designation for at least six diverse species that produce botulinum neurotoxins (BoNTs). There are seven known serotypes of BoNTs (/A through/G), all of which are potent toxins classified as category A bioterrorism agents. BoNT/G is the least studied of the seven serotypes. In an effort to further characterize the holotoxin and neurotoxin-associated proteins (NAPs), we conducted an in silico and proteomic analysis of commercial BoNT/G com  ...[more]

Similar Datasets

| S-EPMC5308270 | biostudies-literature
| S-EPMC2894633 | biostudies-literature
| S-EPMC2394882 | biostudies-literature
| S-EPMC2674294 | biostudies-literature
| S-EPMC2168929 | biostudies-literature
| S-EPMC2798021 | biostudies-literature
| S-EPMC2753052 | biostudies-literature
| S-EPMC2901728 | biostudies-literature
| S-EPMC3558463 | biostudies-literature
| S-EPMC8705745 | biostudies-literature